Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T00:01:27.238Z Has data issue: false hasContentIssue false

C60 Nanowhiskers Formed by the Liquid–liquid Interfacial Precipitation Method

Published online by Cambridge University Press:  31 January 2011

K. Miyazawa
Affiliation:
Department of Materials Engineering, School of Engineering, University of Tokyo, 7–3-1, Hongo,Bunkyo-ku, Tokyo, 113–8656, Japan
Y. Kuwasaki
Affiliation:
Department of Materials Engineering, School of Engineering, University of Tokyo, 7–3-1, Hongo,Bunkyo-ku, Tokyo, 113–8656, Japan
A. Obayashi
Affiliation:
Department of Materials Engineering, School of Engineering, University of Tokyo, 7–3-1, Hongo,Bunkyo-ku, Tokyo, 113–8656, Japan
M. Kuwabara
Affiliation:
Department of Materials Engineering, School of Engineering, University of Tokyo, 7–3-1, Hongo,Bunkyo-ku, Tokyo, 113–8656, Japan
Get access

Abstract

Fine needlelike crystals of C60 have been formed by a liquid–liquid interfacial precipitation method which uses an interface of the concentrated toluene solution of C60/isopropyl alcohol. The needlelike crystals of C60 with a diameter of submicrons (“C60 nanowhiskers”) were found to be single crystalline and composed of thin slabswith a thickness of about 10 nm. The intermolecular distance of the C60 nanowhiskerswas found to be shortened along the growth axis as compared with the pristine C60crystals, indicating a formation of strong bonding between C60 molecules. TheC60 nanowhiskers are assumed to be polymerized via the “2 + 2” cycloaddition inthe close-packed [110]c direction.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Michaud, F., Barrio, M., Toscani, S., López, D.O., Tamarit, J.Ll., Agafonov, V., Szwarc, H., and Céolin, R., Phys. Rev. B 57, 10351 (1998).CrossRefGoogle Scholar
Ce´olin, R., Tamarit, J.Ll., Lo´pez, D.O., Barrio, M., Agafonov, V., Allouchi, H., Moussa, F., and Szwarc, H., Chem. Phys. Lett. 314, 21 (1999).CrossRefGoogle Scholar
Toscani, S., Allouchi, H., Tamarit, J.Ll., Lo´pez, D.O., Barrio, M., Agafonov, V., Rassat, A., Szwarc, H., Ce´olin, R., Chem. Phys. Lett. 330, 491 (2000).CrossRefGoogle Scholar
Ogawa, S., Furusawa, H., Watanabe, T., Yamamoto, H., J. Phys. Chem. Solids 61, 1047 (2000).CrossRefGoogle Scholar
Sica, F., Adinolfi, S., Vitagliano, L., Zagari, Z., Capasso, S., and Mazzarella, L., J. Cryst. Growth 168, 192 (1996).CrossRefGoogle Scholar
Aoyama, K., J. Cryst. Growth 168, 198 (1996).CrossRefGoogle Scholar
Wang, K-A., Rao, A.M., Eklund, P.C., Dresselhaus, M.S., and Dresselhaus, G., Phys. Rev. B 48, 11375 (1993).CrossRefGoogle Scholar
Rao, A.M., Eklund, P.C., Venkateswaran, U.D., Tucker, J., Duncan, M.A., Bendele, G.M., Stephens, P.W., Hodeau, J-L., Marques, L., Núñez-Regueiro, M., Bashkin, I.O., Ponyatovsky, E.G., and Morovsky, A.P., Appl. Phys. A 64, 231 (1997).CrossRefGoogle Scholar
Fischer, J.E., Heiney, P.A., Luzzi, D.E., and Cox, D.E., in Fullerenes, edited By Hammond, G.S. and Kuck, V.J. (American Chemical Society, Washington, D.C., 1992), pp. 5569.CrossRefGoogle Scholar
McCready, D. and Alnajjar, M., Powder Diffraction File No. 44558, International Centre for Diffraction Data, Newton Square, PA, (1994).Google Scholar
Iwasa, Y., Arima, T., Fleming, R.M., Siegrist, T., Zhou, O., Haddon, R.C., Rothberg, L.J., Lyons, K.B., Carter, H.L. Jr., Hebard, A.F., Tycko, R., Dabbagh, G., Krajewski, J.J., Thomas, G.A., and Yagi, T., Science 264, 1570 (1994).CrossRefGoogle Scholar
Oszlanyi, G. and Forro, L., Solid State Commun. 93, 265 (1995).CrossRefGoogle Scholar