Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-02T21:38:57.752Z Has data issue: false hasContentIssue false

Camber development during cofiring Ag-based low-dielectric-constant ceramic package

Published online by Cambridge University Press:  31 January 2011

Jau-Ho Jean
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
Chia-Ruey Chang
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
Get access

Abstract

Camber (curvature) development during cofiring a two-layered structure of Ag film/low-dielectric-constant, low-temperature cofired ceramic (LTCC) green tape has been investigated. At a given thickness of Ag film, both the camber and camber rate decrease linearly with increasing the square thickness of LTCC. Densification mismatch between Ag and LTCC is attributed to be the root cause for the camber generation during cofiring. Mathematical analysis is made to theoretically describe the camber development, and the results show a fairly good agreement with experimental observations.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tummala, R. R., J. Am. Ceram. Soc. 74, 895 (1991).CrossRefGoogle Scholar
2.Gupta, T. K. and Jean, J-H., J. Mater. Res. 11, 243 (1996).CrossRefGoogle Scholar
3.Shimada, Y., Utsumi, K., and Ikeda, T., Int. J. Hybrid Microelectron. 7, 29 (1984).Google Scholar
4.Steinberg, J. I., Horowitz, S. J., and Bacher, R. J., in Advances in Ceramics, edited by Blum, J. B. and Cannon, W. R. (Am. Ceram. Soc., Westerville, OH, 1986), Vol. 19, p. 31.Google Scholar
5.Jean, J-H. and Gupta, T. K., IEEE CHMT Part B: Adv. Packaging 17, 228 (1994).Google Scholar
6.Shimada, Y., Yamashita, Y., and Takamizawa, H., IEEE CHMT 11, 163 (1988).Google Scholar
7.Mattox, D. M., Gurkovich, S. R., Olenick, J. A., and Mason, K. M., Ceram. Eng. Sci. Proc. 9 (11–12), 1567 (1988).Google Scholar
8.Knickerbocker, J. U., Am. Ceram. Soc. Bull. 71, 1393 (1992).Google Scholar
9.Kumar, A. H. and Tummala, R. R., Int. J. Hybrid Microelectron. 14, 137 (1991).Google Scholar
10.Bordia, R. K. and Raj, R., J. Am. Ceram. Soc. 68, 287 (1985).CrossRefGoogle Scholar
11.Hsueh, C. H. and Evans, A. G., J. Am. Ceram. Soc. 68, 120 (1985).Google Scholar
12.Cheng, T. and Raj, R., J. Am. Ceram. Soc. 72, 1649 (1989).CrossRefGoogle Scholar
13.Lu, G-Q., Sutterlin, R. C., and Gupta, T. K., J. Am. Ceram. Soc. 76, 1907 (1993).CrossRefGoogle Scholar
14.Lu, G-Q., Alcoa Report No. 04-90-05 (1990).Google Scholar
15. Technical publication of FERROTAPE-A6, Ferro Corp., 1996.Google Scholar
16.Tauchert, T. R., in Thermal Stress I, edited by Hetnarski, R. B. (Elsevier Science, New York, 1986), Chap. 2.Google Scholar
17.Jean, J-H. and Chang, C-R., unpublished.Google Scholar
18.Ohring, M., in The Materials Science of Thin Films (Academic Press, San Diego, CA, 1991), Chap. 9.Google Scholar
19.Bordia, R. K. and Scherer, G. W., Acta Metall. 36, 2393 (1988).CrossRefGoogle Scholar
20.Carter, G. F., in Metals Handbook, edited by Boyer, H. E. and Gall, T. L. (ASM, Metals Park, OH, 1985), p. 2.Google Scholar
21.Campbell, D. E. and Hagy, H. E., in CRC Handbook of Materials Science, edited by Lynch, C. T. (CRC Press, Boca Raton, FL, 1975), Sec. 2.Google Scholar
22.Bordia, R. K. and Scherer, G. W., Acta Metall. 36, 2399 (1988).CrossRefGoogle Scholar
23.Trouton, F. T., Proc. R. Soc. London 77, 426 (1906).Google Scholar
24.Herring, C., J. Appl. Phys. 21, 437 (1950).CrossRefGoogle Scholar
25.Coble, R. L., J. Appl. Phys. 34, 1679 (1963).CrossRefGoogle Scholar
26.Oda, T., Takada, T., and Kachi, S., J. Jpn. Soc. Powder Met. 14, 118 (1967).Google Scholar
27.Sobaszek, A., Nukleonika 13, 279 (1969).Google Scholar
28.Mackenzie, J. K. and Shuttleworth, R., Proc. Phys. Soc. London 62, 833 (1949).CrossRefGoogle Scholar
29.Mackenzie, J. K., Proc. Phys. Soc. London, Sec. B 63, 2 (1950).CrossRefGoogle Scholar
30.Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., in Introduction to Ceramics, 2nd ed. (John Wiley & Sons, New York, 1976), p. 758.Google Scholar
31.Jean, J-H. and Chang, C-R., unpublished.Google Scholar