Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-07T19:34:40.430Z Has data issue: false hasContentIssue false

Carbothermal synthesis of titanium oxycarbide as electrocatalyst support with high oxygen evolution reaction activity

Published online by Cambridge University Press:  09 November 2012

Kan Huang
Affiliation:
Department of Chemical and Biological Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409
Yunfeng Li
Affiliation:
Department of Chemical and Biological Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409
Yangchuan Xing*
Affiliation:
Department of Chemical Engineering, University of Missouri, Columbia, Missouri 65211
*
a)Address all correspondence to this author. e-mail: xingy@missouri.edu
Get access

Abstract

Carbothermal reduction of semiconducting TiO2 into highly conductive titanium oxycarbide (TiOxCy) was investigated. The thermally produced uniform carbon layer on TiO2 (Degussa P25) protects the TiO2 nanoparticles from sintering and, at the same time, supplies the carbon source for doping TiO2 with carbon. At low temperatures (e.g., 700 °C), carbon only substitutes part of the oxide and distorts the TiO2 lattice to form TiO2−xCx with only substitutional carbon. When the carbon-doped TiO2 is annealed at a higher temperature (1100 °C), x-ray diffraction and x-ray photoelectron spectroscopy results showed that TiOxCy, a solid solution of TiO and TiC, was formed, which displays different diffraction peaks and binding energies. It was shown that TiOxCy has much better oxygen revolution reaction activity than TiO2 or TiO2−xCx. Further studies showed that the TiOxCyobtained can be used as a support for metal electrocatalyst, leading to a bifunctional catalyst effective for both oxygen reduction and evolution reactions.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Newman, J. and Tiedemann, W.: Porous-electrode theory with battery applications. AIChE J. 21, 25 (1975).Google Scholar
Litster, S. and McLean, G.: PEM fuel cell electrodes. J. Power Sources 130, 61 (2004).Google Scholar
Dicks, A.L.: The role of carbon in fuel cells. J. Power Sources 156, 128 (2006).Google Scholar
Wang, X.L., Zhang, H.M., Zhang, J.L., Xu, H.F., Tian, Z.Q., Chen, J., Zhong, H.X., Liang, Y.M., and Yi, B.L.: Micro-porous layer with composite carbon black for PEM fuel cells. Electrochim. Acta 51, 4909 (2006).Google Scholar
Eom, S-W., Lee, C-W., Yun, M-S., and Sun, Y-K.: The roles and electrochemical characterizations of activated carbon in zinc air battery cathodes. Electrochim. Acta 52, 1592 (2006).Google Scholar
Ogasawara, T., Débart, A., Holzapfel, M., Novák, P., and Bruce, P.G.: Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc. 128, 1390 (2006).Google Scholar
Débart, A., Bao, J., Armstrong, G., and Bruce, P.G.: An O2 cathode for rechargeable lithium batteries: The effect of a catalyst. J. Power Sources 174, 1177 (2007).Google Scholar
Willsau, J. and Heitbaum, J.: The influence of Pt-activation on the corrosion of carbon in gas diffusion electrodes—a DEMS study. J. Electroanal. Chem. 161, 93 (1984).Google Scholar
Natarajan, S.K. and Hamelin, J.: Electrochemical durability of carbon nanostructures as catalyst support for PEMFCs. J. Electrochem. Soc. 156, B210 (2009).Google Scholar
Song, H., Qiu, X., Li, F., Zhu, W., and Chen, L.: Ethanol electro-oxidation on catalysts with TiO2 coated carbon nanotubes as support. Electrochem. Commun. 9, 1416 (2007).Google Scholar
Bauer, A., Lee, K., Song, C., Xie, Y., Zhang, J., and Hui, R.: Pt nanoparticles deposited on TiO2 based nanofibers: Electrochemical stability and oxygen reduction activity. J. Power Sources 195, 3105 (2010).CrossRefGoogle Scholar
Fuentes, R.E., Farell, J., and Weidner, J.W.: Multimetallic electrocatalysts of Pt, Ru, and Ir supported on anatase and rutile TiO2 for oxygen evolution in an acid environment. Electrochem. Solid-State Lett. 14, E5 (2011).CrossRefGoogle Scholar
Walsh, F.C. and Wills, R.G.A.: The continuing development of Magnéli phase titanium sub-oxides and Ebonex® electrodes. Electrochim. Acta 55, 6342 (2010).CrossRefGoogle Scholar
Li, X., Zhu, A.L., Qu, W., Wang, H., Hui, R., Zhang, L., and Zhang, J.: Magneli phase Ti4O7 electrode for oxygen reduction reaction and its implication for zinc-air rechargeable batteries. Electrochim. Acta 55, 5891 (2010).Google Scholar
Ioroi, T., Senoh, H., Yamazaki, S-I., Siroma, Z., Fujiwara, N., and Yasuda, K.: Stability of corrosion-resistant Magnéli-phase Ti4O7-supported PEMFC catalysts at high potentials. J. Electrochem. Soc. 155, B321 (2008).Google Scholar
Han, W-Q. and Wang, X-L.: Carbon-coated Magneli-phase TinO2n-1 nanobelts as anodes for Li-ion batteries and hybrid electrochemical cells. Appl. Phys. Lett. 97, 243104 (2010).Google Scholar
Tsumura, T., Kojitani, N., Izumi, I., Iwashita, N., Toyoda, M., and Inagaki, M.: Carbon coating of anatase-type TiO2 and photoactivity. J. Mater. Chem. 12, 1391 (2002).Google Scholar
Irie, H., Watanabe, Y., and Hashimoto, K.: Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst. Chem. Lett. 32, 772 (2003).Google Scholar
Choi, Y., Umebayashi, T., and Yoshikawa, M.: Fabrication and characterization of C-doped anatase TiO2 photocatalysts. J. Mater. Sci. 39, 1837 (2004).Google Scholar
Park, J.H., Kim, S., and Bard, A.J.: Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett. 6, 24 (2005).Google Scholar
Grimes, C.A. and Mor, G.K.: TiO2 Nanotube Arrays: Synthesis, Properties, and Applications (Springer Science, Germany, 2009).Google Scholar
Kammler, H.K. and Pratsinis, S.E.: Carbon-coated titania nanostructured particles: Continuous, one-step flame-synthesis. J. Mater. Res. 18, 2670 (2003).CrossRefGoogle Scholar
Choi, Y., Umebayashi, T., Yamamoto, S., and Tanaka, S.: Fabrication of TiO2 photocatalysts by oxidative annealing of TiC. J. Mater. Sci. Lett. 22, 1209 (2003).CrossRefGoogle Scholar
Inagaki, M., Hirose, Y., Matsunaga, T., Tsumura, T., and Toyoda, M.: Carbon coating of anatase-type TiO2 through their precipitation in PVA aqueous solution. Carbon 41, 2619 (2003).Google Scholar
Inagaki, M., Kojin, F., Tryba, B., and Toyoda, M.: Carbon-coated anatase: The role of the carbon layer for photocatalytic performance. Carbon 43, 1652 (2005).Google Scholar
Toyoda, M., Yano, T., Tryba, B., Mozia, S., Tsumura, T., and Inagaki, M.: Preparation of carbon-coated Magneli phases TinO2n-1 and their photocatalytic activity under visible light. Appl. Catal., B 88, 160 (2009).Google Scholar
Hahn, R., Schmidt-Stein, F., Salonen, J., Thiemann, S., Song, Y., Kunze, J., Lehto, V-P., and Schmuki, P.: Semimetallic TiO2 nanotubes. Angew. Chem. Int. Ed. 48, 7236 (2009).Google Scholar
Kibombo, H.S. and Koodali, R.T.: Heterogeneous photocatalytic remediation of phenol by platinized titania–silica mixed oxides under solar-simulated conditions. J. Phys. Chem. C 115, 25568 (2011).Google Scholar
Lee, J. and Choi, W.: Photocatalytic reactivity of surface platinized TiO2: Substrate specificity and the effect of Pt oxidation state. J. Phys. Chem. B 109, 7399 (2005).Google Scholar
Ioroi, T., Kitazawa, N., Yasuda, K., Yamamoto, Y., and Takenaka, H.: Iridium oxide/platinum electrocatalysts for unitized regenerative polymer electrolyte fuel cells. J. Electrochem. Soc. 147, 2018 (2000).Google Scholar
Song, S., Zhang, H., Ma, X., Shao, Z-G., Zhang, Y., and Yi, B.: Bifunctional oxygen electrode with corrosion-resistive gas diffusion layer for unitized regenerative fuel cell. Electrochem. Commun. 8, 399 (2006).Google Scholar
Xing, Y.: Synthesis and electrochemical characterization of uniformly-dispersed high loading Pt nanoparticles on sonochemically-treated carbon nanotubes. J. Phys. Chem. B 108, 19255 (2004).CrossRefGoogle Scholar
Koc, R. and Folmer, J.S.: Carbothermal synthesis of titanium carbide using ultrafine titania powders. J. Mater. Sci. 32, 3101 (1997).Google Scholar
Chen, X. and Mao, S.S.: Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891 (2007).Google Scholar
Reyes-Garcia, E.A., Sun, Y., Reyes-Gil, K.R., and Raftery, D.: Solid-state NMR and EPR analysis of carbon-doped titanium dioxide photocatalysts (TiO2-xCx). Solid State Nucl. Magn. Reson. 35, 74 (2009).CrossRefGoogle Scholar
Luo, Y., Ge, S., Jin, Z., and Fisher, J.: Formation of titanium carbide coating with micro-porous structure. Appl. Phys. A 98, 765 (2010).Google Scholar
Göpel, W., Rocker, G., and Feierabend, R.: Intrinsic defects of TiO2(110): Interaction with chemisorbed O2, H2, CO, and CO2. Phys. Rev. B 28, 3427 (1983).Google Scholar
Di Valentin, C., Pacchioni, G., and Selloni, A.: Theory of carbon doping of titanium dioxide. Chem. Mater. 17, 6656 (2005).Google Scholar
Huang, K., Sasaki, K., Adzic, R.R., and Xing, Y.: Increasing Pt oxygen reduction reaction activity and durability with carbon-doped TiO2 nanocoating catalyst support. J. Mater. Chem. 22, 1682416832 (2012).Google Scholar
Blackstock, J.J., Donley, C.L., Stickle, W.F., Ohlberg, D.A.A., Yang, J.J., Stewart, D.R., and Williams, R.S.: Oxide and carbide formation at titanium/organic monolayer interfaces. J. Am. Chem. Soc. 130, 4041 (2008).Google Scholar
Moreno-Castilla, C., Maldonado-Hódar, F.J., Carrasco-Marín, F., and Rodríguez-Castellón, E.: Surface characteristics of titania/carbon composite aerogels. Langmuir 18, 2295 (2002).Google Scholar
Nowotny, J., Bak, T., Nowotny, M.K., and Sheppard, L.R.: TiO2 surface active sites for water splitting. J. Phys. Chem. B 110, 18492 (2006).CrossRefGoogle ScholarPubMed
Calatayud, M., Markovits, A., Menetrey, M., Mguig, B., and Minot, C.: Adsorption on perfect and reduced surfaces of metal oxides. Catal. Today 85, 125 (2003).Google Scholar
Menetrey, M., Markovits, A., and Minot, C.: Reactivity of a reduced metal oxide surface: Hydrogen, water and carbon monoxide adsorption on oxygen defective rutile TiO2(110). Surf. Sci. 524, 49 (2003).CrossRefGoogle Scholar
Suntivich, J., May, K.J., Gasteiger, H.A., Goodenough, J.B., and Shao-Horn, Y.: A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383 (2011).Google Scholar
Xing, Y., Cai, Y., Vukmirovic, M.B., Zhou, W-P., Karan, H., Wang, J.X., and Adzic, R.R.: Enhancing oxygen reduction reaction activity via Pd−Au alloy sublayer mediation of Pt monolayer electrocatalysts. J. Phys. Chem. Lett. 1, 3238 (2010).CrossRefGoogle Scholar