Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T03:42:03.588Z Has data issue: false hasContentIssue false

Carrier diffusion characterization in epitaxial 4H–SiC

Published online by Cambridge University Press:  31 January 2011

Paulius Grivickas
Affiliation:
Department of Solid State Electronics, Royal Institute of Technology, Electrum 229, S-164 40, Kista-Stockholm, Sweden
Jan Linnros
Affiliation:
Department of Solid State Electronics, Royal Institute of Technology, Electrum 229, S-164 40, Kista-Stockholm, Sweden
Vytautas Grivickas
Affiliation:
Institute of Material Research and Applied Sciences, Vilnius University, Szaulėtekio 10, 2054 Vilnius, Lithuania
Get access

Abstract

Carrier diffusivity has been experimentally determined in low-doped n-type epitaxial 4H–SiC over a wide injection range using a Fourier transient grating technique. The data showed that, with injection, the diffusion coefficient increased from a minority-hole diffusivity Dh = 2.3 cm2/s to an ambipolar diffusivity Da = 4.2 cm2/s at approximately 1016 cm−3 with a substantial decrease occurring at higher injections. The derived Dh value corresponded to a minority-hole drift mobility of μh = 90 cm2/Vs, about 30% lower than available majority-hole mobilities. Also, the temperature dependence of the ambipolar diffusivity in the 296–523 K range has been determined. It followed a power law Da ∼ T−1.3 which notably differed from the expected one using the majority-hole mobility temperature dependence.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Casady, J.B. and Johnson, R.W., Solid-State Electron. 39, 1409 (1996).CrossRefGoogle Scholar
2.Choyke, W.J. and Pensl, G., MRS Bull. 22, 25 (1997).CrossRefGoogle Scholar
3.Sridhara, S.G., Vlemen, L.L., Devaty, R.P., Choyke, W.J., Larkin, D.L., Kong, H.S., Troffer, T., and Pensl, G., J. Appl. Phys. 83, 7909 (1998).CrossRefGoogle Scholar
4.Schöner, A., Karlsson, S., Schmitt, T., Nordel, N., Linnardsson, M., and Rottner, K., Mater. Sci. Eng. B 61–62, 389 (1999).CrossRefGoogle Scholar
5.Linnros, J. and Grivickas, V., in Proceedings of the 22nd Conference on The Physics of Semiconductors, edited by Lockwood, D.J. (World Scientific, Singapore, 1995), Vol. 1, p. 53.Google Scholar
6.McLean, T.P. and Paige, E.G.S., J. Phys. Chem. Solids 18, 139 (1961).CrossRefGoogle Scholar
7.Mnatsakanov, T.T., Gresserov, B.N., and Pomortseva, L.I., Solid State Electron. 38, 225 (1995).CrossRefGoogle Scholar
8.Haynes, J.R. and Shockley, W., Phys. Rev. 81, 835 (1951).CrossRefGoogle Scholar
9.Eichler, H.J., Gunter, P., and Pohl, C.W., Laserinduced Dynamic Gratings (Springer Series in Optical Sciences 50, Berlin, Germany, 1986).CrossRefGoogle Scholar
10.Linnros, J., and Grivickas, V., Phys. Rev. B 50, 16943 (1994).CrossRefGoogle Scholar
11.Kordina, O., Henry, A., Bergman, J.P., Son, N.T., Chen, W.M., Hallin, C., and Janzen, E., Appl. Phys. Lett. 66, 1373 (1995).CrossRefGoogle Scholar
12.Kordina, O., Bergman, J.P., Hallin, C., and Janzen, E., Appl. Phys. Lett. 69, 679 (1996).CrossRefGoogle Scholar
13.Galeckas, A., Linnros, J., and Grivickas, V., Appl. Phys. Lett. 71, 3269 (1997).CrossRefGoogle Scholar
14.Grivickas, V., Galeckas, A., Grivickas, P., and Linnros, J., Mater. Sci. Forum 338–342, 555 (2000).CrossRefGoogle Scholar
15.Grivickas, P., Linnros, J., and Grivickas, V., Mater. Sci. Forum 338–342, 671 (2000).CrossRefGoogle Scholar
16.Ryvkin, S.M., Photoelectric Effects in Sermiconductors (Consultants Bureau, New York, 1964).Google Scholar
17.Grivickas, V., Linnros, J., Galeckas, A., and Bikbajevas, V., Proceedings of the ICPS-23 (World Scientific Singapore, 1996), Vol. 1, p. 91.Google Scholar