Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-02T18:07:36.026Z Has data issue: false hasContentIssue false

CdTe microcrystallites doped in melt-quenched borosilicate glass

Published online by Cambridge University Press:  03 March 2011

Jie Fu
Affiliation:
Department of Applied Chemistry, Faculty of Engineering, Okayama University, 3-1-1 Tsushima Naka, Okayama-shi 700, Japan
Akiyoshi Osaka*
Affiliation:
Department of Applied Chemistry, Faculty of Engineering, Okayama University, 3-1-1 Tsushima Naka, Okayama-shi 700, Japan
Tokuro Nanba
Affiliation:
Department of Applied Chemistry, Faculty of Engineering, Okayama University, 3-1-1 Tsushima Naka, Okayama-shi 700, Japan
Yoshinari Miura
Affiliation:
Department of Applied Chemistry, Faculty of Engineering, Okayama University, 3-1-1 Tsushima Naka, Okayama-shi 700, Japan
*
a)Author to whom correspondence should be addressed.
Get access

Abstract

CdTe microcrystallites were precipitated in 57.8CdO · 19.7SiO2 · 19.0B2O3 · 3.5Al2O3 glasses doped with 5.0 mol % CdTe. The microcrystallite size increased linearly with t1/3 (t: heat-treatment time), indicating diffusion-controlled growth mechanism, where the estimated activation energy for diffusion was 542 kJ/mol. The linear increase in the band gap energy with l/r2 (r: the crystallite radius) suggested the quantum size effect of the CdTe microcrystallites.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Jain, R. K. and Lind, R. C., J. Opt. Soc. Am. 73, 647 (1983).CrossRefGoogle Scholar
2Yumoto, J., Fukushima, S., and Kubodera, K., Opt. Lett. 12, 832 (1987).CrossRefGoogle Scholar
3Yao, S. S., Karagoleff, C., Gabel, A., Fortenberry, R., Seaton, C. T., and Stegeman, G. I., Appl. Phys. Lett. 46, 801 (1985).CrossRefGoogle Scholar
4Schmitt Rink, S., Miller, D. A.B., and Chemla, D.S., Phys. Rev. B 35, 813 (1987).CrossRefGoogle Scholar
5Banyai, L., Hu, Y. Z., Lindberg, M., and Koch, S. W., Phys. Rev. B 38, 8142 (1988).CrossRefGoogle Scholar
6Ricard, D., Roussignol, P., Hache, F., and Flytzaniz, Ch., Phys.Status Solidi B 159, 275 (1990).CrossRefGoogle Scholar
7Esch, V., Fluegel, B., Khitrova, G., Gibbs, H. M., Jiajin, Xu, Kang, K., Koch, S. W., Liu, L. C., Risbud, S. H., and Pegyhambarian, N., Phys. Rev. B 42, 7450 (1990).CrossRefGoogle Scholar
8Omi, S., Hiraga, H., Uchida, K., Hata, C., Asahara, Y., Ikushima, A. J., Tokizaki, T., and Nakamura, A., Science and Technology of New Glasses (Proc. Int. Conf. Science and Technology of New Glasses), edited by Sakka, S. and Soga, N., Tokyo (1991), pp. 181186.Google Scholar
9Borrelli, N. F., Hall, D. W., Holland, H. J., and Smith, D. W., J. Appl. Phys. 61, 5399 (1987).CrossRefGoogle Scholar
10Liu, L. C. and Risbud, S. H., J. Appl. Phys. 68, 28 (1990).CrossRefGoogle Scholar
11Fuyu, Y. and Parkar, J. M., Mater. Lett. 6, 233 (1988).CrossRefGoogle Scholar
12Omi, S., Uchida, K., Hata, T., Hiraga, H., Asahara, Y., Ikushima, A. J., Tokizaki, T., and Nakamura, A., 31st Symp. Glass, Glass Div. Ceram. Soc. Japan (1990), p. 53.Google Scholar
13Efros, Al. L. and Efros, A. L., Sov. Phys. Semicond. 16, 772 (1982).Google Scholar
14Potter, B. G. Jr., and Simmons, J.H., J. Appl. Phys. 68, 1218 (1990).CrossRefGoogle Scholar
15Nogami, M., Nagasaka, K., and Suzuki, T., J. Am. Ceram. Soc. 75, 220 (1992).CrossRefGoogle Scholar
16Shinojima, H., Yumoto, J., Uesugi, N., Omi, S., and Asahara, Y., Appl. Phys. Lett. 55, 1519 (1989).CrossRefGoogle Scholar