Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-13T01:53:56.316Z Has data issue: false hasContentIssue false

Characterization of biofunctional thin films deposited by activated vapor silanization

Published online by Cambridge University Press:  31 January 2011

María Arroyo-Hernández*
Affiliation:
Faculty of Sciences, Department of Applied Physics C-12, Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain
José Pérez-Rigueiro
Affiliation:
Department of Materials Science, Escuela Técnica Superior de Ingenieros (ETSI) Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
Ana Conde
Affiliation:
Department of Corrosion and Protection, Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), 28040 Madrid, Spain
Aurelio Climent
Affiliation:
Centro de Micro-Análisis de Materiales, Universidad Autónoma de Madrid, 28049 Madrid, Spain
Raul Gago
Affiliation:
Centro de Micro-Análisis de Materiales, Universidad Autónoma de Madrid, 28049 Madrid, Spain
Miguel Manso
Affiliation:
Faculty of Sciences, Department of Applied Physics C-12, Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain
José M. Martínez-Duart
Affiliation:
Faculty of Sciences, Department of Applied Physics C-12, Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain
*
a)Address all correspondence to this author. e-mail: marroyo@imm.cnm.csic.es
Get access

Abstract

A novel technique based in the combination of vapor silanization and chemical vapor deposition, hereafter referred to as activated vapor silanization (AVS), is shown to be an effective biofunctionalization technique. The AVS process results in thin organic films with a high surface amine concentration when deposited on substrates with different chemical characteristics, such as silicon, porous silicon, or gold. Chemical characterization shows that the films are composed of carbon (hydrocarbon, C–Si, C–C), silicon (different oxidation states), nitrogen (primary and secondary amines), oxygen, and hydrogen. Relevantly, the amines are also distributed along the film thickness, ensuring functionality even after some degradation of the films. AVS films behave practically as monocrystalline silicon substrates under loading–unloading tests. In addition, the AVS films behave as permeable membranes for molecules smaller than 5 Å, and the amine surface concentration is estimated to be 8 NH2/nm2 for molecules of about 12 Å, which is three times higher than that obtained with standard silanization procedures.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Prime, K.L.Whitesides, G.M.: Self-assembled organic monolayers—Model systems for studying adsorption of proteins at surfaces. Science 252, 1164 1991CrossRefGoogle ScholarPubMed
2Andres, R.P., Bielefeld, J.D., Henderson, J.I., Janes, D.B., Kolagunta, V.R., Kubiak, C.P., Mahoney, W.J.Osifchin, R.G.: Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters. Science 273, 1690 1996CrossRefGoogle Scholar
3Buriak, J.M.: Organometallic chemistry on silicon surfaces: Formation of functional monolayers bound through Si–C bonds. Chem. Commun. 12, 1051 1999CrossRefGoogle Scholar
4Stewart, M.P., Robins, E.G., Geders, T.W., Allen, M.J., Choi, H.C.Buriak, J.M.: Three methods for stabilization and functionalization of porous silicon surfaces via hydrosilylation and electrografting reactions. Phys. Status Solidi A 182, 109 20003.0.CO;2-#>CrossRefGoogle Scholar
5Kuhnen, T., Ruffolo, R., Stradioto, M., Ulbrich, D., McGlinchey, M.J., Brook, M.A.: Using hydrosilylation to assemble organometallic polymers containing combinations of silicon-based functional groups. Organometallics 16, 5042 1997CrossRefGoogle Scholar
6Brzoska, J.B., Benazouz, I.Rondelez, F.: Silanization of solid substrates—A step toward reproducibility. Langmuir 10, 4367 1994CrossRefGoogle Scholar
7Fadeev, A.Y.McCarthy, T.J.: Trialkylsilane monolayers covalently attached to silicon surfaces: Wettability studies indicating that molecular topography contributes to contact angle hysteresis. Langmuir 15, 3759 1999CrossRefGoogle Scholar
8Kurth, D.G.Bein, T.: Surface reactions on thin-layers of silane coupling agents. Langmuir 9, 2965 1999CrossRefGoogle Scholar
9White, L.D.Trip, C.P.: Reaction of (3-aminopropyl)dimethylethoxysilane with amine catalysts on silica surfaces. J. Colloid Interface Sci. 232, 400 2000CrossRefGoogle ScholarPubMed
10Manso-Silvan, M., Martin-Palma, R.J., Perez-Rigueiro, J.Martinez-Duart, J.M.: Surface functionalisation by the condensation of hybrid titanate-amino sols. Thin Solid Films 415, 253 2002CrossRefGoogle Scholar
11Wang, D.Jones, F.R.: Surface analytical study of the interaction between γ-amino propyl triethoxysilane and e-glass surface. 2. X-ray photoelectron-spectroscopy. J. Mater. Sci. 28, 2481 1993CrossRefGoogle Scholar
12Zhu, P.X., Masuda, Y.Koumoto, K.: Site-selective adhesion of hydroxyapatite microparticles on charged surfaces in a supersaturated solution. J. Colloid Interface Sci. 243, 31 2001CrossRefGoogle Scholar
13Basyuk, V.A.Chuiko, A.A.: Infrared spectra of amide products formed during chemisorption of α-amino acid vapors on the surface of γ-aminopropyl-aerosil. Zh. Prikl. Spektrosk. 52, 935 1990Google Scholar
14Martín-Palma, R.J., Manso, M., Pérez-Rigueiro, J., García-Ruiz, J.P.Martínez-Duart, J.M.: Surface biofunctionalization of materials by amine groups. J. Mater. Res. 19, 2415 2004CrossRefGoogle Scholar
15Arroyo-Hernández, M., Pérez-Rigueiro, J.Martínez-Duart, J.M.: Formation of amine functionalized films by chemical vapor deposition. Mater. Sci. Eng., C 26, 938 2006CrossRefGoogle Scholar
16Arroyo-Hernandez, M., Martin-Palma, R.J., Perez-Rigueiro, J., Garcia-Ruiz, J.P., Garcia-Fierro, J.L.Martinez-Duart, J.M.: Biofunctionalization of surfaces of nanostructured porous silicon. Mater. Sci. Eng., C 23, 697 2003CrossRefGoogle Scholar
17Mayer, M.: SIMNRA User’s Guide Max Planck Institute Garching, Germany IPP Report 9/113 1997Google Scholar
18Quillet, V., Abel, F.Schott, M.: Absolute cross section measurements for H and D elastic recoil using 1 to 2.5 MeV 4He ions, and for the 12C(d,p)13C and 16O(d,p1)17O nuclear reactions. Nucl. Instrum. Methods Phys. Res., Sect. B 83, 47 1993CrossRefGoogle Scholar
19Moon, J.H., Shin, J.W., Kim, S.Y.Park, J.W.: Formation of uniform aminosilane thin layers: An imine formation to measure relative surface density of the amine group. Langmuir 12, 4621 1996CrossRefGoogle Scholar
20Oliver, W.C.Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 1992CrossRefGoogle Scholar
21Kurth, D.G.Bein, T.: Thin films of (3-aminopropyl)triethoxysilane on aluminum oxide and gold substrates. Langmuir 11, 3061 1995CrossRefGoogle Scholar
22Ogasawara, T., Nara, A., Okabayashi, H., Nishio, E.O’Connor, C.J.: Time-resolved near-infrared and two-dimensional near-infrared correlation spectroscopic studies of the polymerization process of silane coupling agents. Dynamic behavior of water molecules in the 3-aminopropyltriethoxysilane–ethanol–water system. Colloid Polym. Sci. 278, 1070 2000CrossRefGoogle Scholar
23Gengenbach, T.R., Chatelier, R.C.Griesser, H.J.: Correlation of the nitrogen 1s and oxygen 1s XPS binding energies with compositional changes during oxidation of ethylene diamine plasma polymers. Surf. Interface Anal. 24, 611 19963.0.CO;2-7>CrossRefGoogle Scholar
24Magalhaes, J.L., Moreira, L.M., Rodrigues-Filho, U.P., Giz, J., Pereira-da Silva, M.A., Landers, R., Vinhas, R.C.G.Nascente, P.A.P.: Surface chemistry of the iron tetraazamacrocycle on the aminopropyl-modified surface of oxidized n-Si(100) by AFM and XPS. Surf. Interface Anal. 33, 293 2002CrossRefGoogle Scholar
25Moon, J.H., Kim, J.H., Kim, K.J., Kang, T.H., Kim, B., Kim, C.H., Hahn, J.H.Park, J.W.: Absolute surface density of the amine group of the aminosilylated thin layers: Ultraviolet–visible spectroscopy, second harmonic generation and synchrotron-radiation photoelectron spectroscopy study. Langmuir 10, 4367 1994Google Scholar