Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-30T19:31:31.023Z Has data issue: false hasContentIssue false

Characterization of diamond thin films: Diamond phase identification, surface morphology, and defect structures

Published online by Cambridge University Press:  31 January 2011

B. E. Williams
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907
J. T. Glass
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907
Get access

Abstract

Thin carbon films grown from a low pressure methane-hydrogen gas mixture by microwave plasma enhanced CVD have been examined by Auger electron spectroscopy, secondary ion mass spectrometry, electron and x-ray diffraction, electron energy loss spectroscopy, and electron microscopy. They were determined to be similar to natural diamond in terms of composition, structure, and bonding. The surface morphology of the diamond films was a function of position on the sample surface and the methane concentration in the feedgas. Well-faceted diamond crystals were observed near the center of the sample whereas a less faceted, cauliflower texture was observed near the edge of the sample, presumably due to variations in temperature across the surface of the sample. Regarding methane concentration effects, threefold {111} faceted diamond crystals were predominant on a film grown at 0.3% CH4 in H2 while fourfold {100} facets were observed on films grown in 1.0% and 2.0% CH4 in H2. Transmission electron microscopy of the diamond films has shown that the majority of diamond crystals have a very high defect density comprised of {111} twins, {111} stacking faults, and dislocations. In addition, cross-sectional TEM has revealed a 50 Å epitaxial layer of β3–SiC at the diamond-silicon interface of a film grown with 0.3% CH4 in H2 while no such layer was observed on a diamond film grown in 2.0% CH4 in H2.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Landolt and Bornstein, Numerical Data and Functional Relationships in Science and Technology (Springer-Verlag, 1987).Google Scholar
2Field, J. E., Properties of Diamond (Academic Press, London, 1979).Google Scholar
3Bazhenov, V. K., Vikulin, I. M., and Gontar, A. G., Sov. Phys. Semicond. 19 (8), 829 (1985).Google Scholar
4Derjaguin, B. V., Spitsyn, B. V., Gorodetsky, A. E., Zakharov, A. P., Bouilov, L. I., and Aleksenko, A. E., J. Crystal Growth 31, 44 (1975).CrossRefGoogle Scholar
5Deryagin, B.V., Fedoseev, D.V., Polyanskaya, N. D., and Statenkova, E.V., Sov. Phys. Crystallogr. 21 (2), 239 (1976).Google Scholar
6Deryagin, B.V., Lyuttsau, V. G., Fedoseev, D.V., and Ryabov, V. A., Sov. Phys. Dokl. 15 (1), 58 (1970).Google Scholar
7Fedoseev, D. V., Varnin, V. P., and Deryagin, B. V., Sov. Phys. Dokl. 15 (8), 787 (1971).Google Scholar
8Geis, M.W., presented at the Third Annual SDIO/IST-ONR Diamond Technology Initiative Symposium, Crystal City, VA, July (1988).Google Scholar
9Nakazawa, H., Kanazawa, Y., Kamo, M., and Osumi, K., Thin Solid Films 151 (2), 199 (1987).CrossRefGoogle Scholar
10Singh, B., Arie, Y., Levine, A. W., and Mesker, O. R., Appl. Phys. Lett. 52 (6), 451 (1988).CrossRefGoogle Scholar
11Matsumoto, S. and Matsui, Y., J. Mater. Sci. 18, 1785 (1983).CrossRefGoogle Scholar
12Sawabe, A. and Inuzuka, T., Thin Solid Films 137, 89 (1986).CrossRefGoogle Scholar
13Matsumoto, S., J. Mater. Sci. Lett. 4, 600 (1985).CrossRefGoogle Scholar
14Sato, Y., Kamo, M., and Setaka, N., in High Tech Ceramics, edited by Vincenzini, P. (Elsevier Science Publishers B.V., Amsterdam, 1987).Google Scholar
15Kobashi, K., Nishimura, K., Kawate, Y., and Horiuchi, T., J. Vac. Sci. Technol. A 6 (3), 1816 (1988).CrossRefGoogle Scholar
16Kawarada, H., Mar, K. S., and Hiraki, A., Jpn. J. Appl. Phys. 26 (6), L1032 (1987).CrossRefGoogle Scholar
17Kamo, M., Sato, Y., Matsumoto, S., and Setaka, N., J. Cryst. Growth 62, 642 (1983).CrossRefGoogle Scholar
18Mitsuda, Y., Kojima, Y., Yoshida, T., and Akashi, K., J. Mater. Sci. 22, 1557 (1987).CrossRefGoogle Scholar
19Bachmann, P. K., Drawl, W., Knight, Diane, Weimer, R., and Messier, R. F., in Diamond and Diamond-Like Materials Synthesis, edited by Johnson, G. H., Badzian, A. R., and Geis, M. W. (Materials Research Society, 1988).Google Scholar
20Chang, C. P., Flamm, D. L., Ibbotson, D. E., and Mucha, J. A., J. Appl. Phys. 63 (5), 1744 (1988).CrossRefGoogle Scholar
21Saito, Y., Matsuda, S., and Nogita, S., J. Mater. Sci. Lett. 5, 565 (1986).CrossRefGoogle Scholar
22Nemanich, R. J., Shroder, R. E., Glass, J. T., and Lucovsky, G., to be published in the Proc. 19* Int. Conf. on the Physics of Semiconductors, Warsaw, Poland, August 1988.Google Scholar
23Nemanich, R. J., Glass, J. T., Lucovsky, G., and Shroder, R. E., J. Vac. Sci. Technol. 6 (3), 1783 (1988).CrossRefGoogle Scholar
24Kawarada, H., Mar, K. S., Suzuki, J., Ito, T., Mori, H., Fujita, H., and Hiraki, A., Jpn. J. Appl. Phys. 26 (11), L1903 (1987).CrossRefGoogle Scholar
25Williams, B.E., Glass, J.T., Davis, R.F., Kobashi, K., and Kawate, Y., in Diamond and Diamond-Like Materials Synthesis, edited by Johnson, G. H., Badzian, A. R., and Geis, M. W. (Materials Research Society, 1988).Google Scholar
26Kobashi, K., Nishimura, K., Kawate, Y., and Horiuchi, T., Phys. Rev. B 38 (6), 4067 (1988).CrossRefGoogle Scholar
27Handbook of Auger Electron Spectroscopy (JEOL Ltd., Tokyo, 1982).Google Scholar
28Feldman, L. C. and Mayer, J. W., Fundamentals of Surface and Thin Film Analysis (North-Holland, New York, 1986).Google Scholar
29Storms, H. A., Brown, K. F., and Stein, J. D., Anal. Chem. 49 (13), 2023 (1977).CrossRefGoogle Scholar
30Berg, S. and Andersson, L. P., Thin Solid Films 58, 117 (1979).CrossRefGoogle Scholar
31Ingram, D. C., Woollam, J. A., and Bu-Abbud, , Thin Solid Films 137, 225 (1986).CrossRefGoogle Scholar
32Angus, J. C., Thin Solid Films 142, 145 (1986).CrossRefGoogle Scholar
33Matsumoto, O., Toshima, H., and Kanzaki, Y., Thin Solid Films 128, 341 (1985).CrossRefGoogle Scholar
34Mirtich, M.J., Sovey, J. S., and Banks, B.A., NASA Tech. Briefs, p. 139, May/June (1986).Google Scholar
35Mori, T. and Namba, Y., J. Vac. Sci. Technol. A 1 (1), 23 (1983).CrossRefGoogle Scholar
36McFeely, F.R., Kowalczyk, S.P., Ley, L., Cavell, R. G., Pollak, R. A., and Shirley, D. A., Phys. Rev. B 9 (12), 5268 (1974).CrossRefGoogle Scholar
37Lurie, P. G. and Wilson, J. M., Surf. Sci. 65, 476 (1977).CrossRefGoogle Scholar
38Madden, H.H., J. Vac. Sci. Technol. 18 (3), 677 (1981).CrossRefGoogle Scholar
39Egerton, R.F. and Whelan, M. J., Philos. Mag. 30, 739 (1974).CrossRefGoogle Scholar
40Solin, S. A. and Ramdas, A.K., Phys. Rev. B 1 (4), 1687 (1970).CrossRefGoogle Scholar
41Wada, N. and Solin, S. A., Physica B 105, 353 (1981).CrossRefGoogle Scholar
42Woods, G.S., Philos. Mag. 23, 473 (1971).CrossRefGoogle Scholar
43Woods, G. S., Philos. Mag. 34 (6), 993 (1976).CrossRefGoogle Scholar
44Trueb, L.F., J. Appl. Phys. 39 (10), 4707 (1968).CrossRefGoogle Scholar
45Phaal, C. and Zuidema, G., Philos. Mag. 14 (127), 79 (1966).CrossRefGoogle Scholar
46Moriyoshi, Y., Kamo, M., Setaka, N., and Sato, Y., J. Mater. Sci. 18, 217 (1983).CrossRefGoogle Scholar
47Humble, P., Proc. R. Soc. London, A 381, 65 (1982).Google Scholar
48Humble, P., Lynch, D.F., and Olsen, A., Philos. Mag. A 52 (5), 623 (1985).CrossRefGoogle Scholar
49Humble, P., Mackenzie, J. K., and Olsen, A., Philos. Mag. A 52 (5), 605 (1985).CrossRefGoogle Scholar
50Carter, C.H., Davis, R.F., and Nutt, S.R., J. Mater. Res. 1 (6), 811 (1986).CrossRefGoogle Scholar
51Liaw, H.P. and Davis, R.F., J. Electrochem. Soc. 12 (131), 3014 (1984).CrossRefGoogle Scholar