Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-02T19:40:17.408Z Has data issue: false hasContentIssue false

The characterization of high-performance PAN-based carbon fibers developed by continuous carbonization and air oxidation

Published online by Cambridge University Press:  03 March 2011

Tse-Hao Ko
Affiliation:
Department of Materials Science, College of Science, Feng Chia University, Taichung, Taiwan, Republic of China
Chien-Hung Li
Affiliation:
Department of Materials Science, College of Science, Feng Chia University, Taichung, Taiwan, Republic of China
Chung-Hua Hu
Affiliation:
Department of Materials Science, College of Science, Feng Chia University, Taichung, Taiwan, Republic of China
Get access

Abstract

The properties of four kinds of Type II carbon fibers, which had been precarbonized at 300 °C, 400 °C, 500 °C, and 600 °C, respectively, during two-stage continuous carbonization, were measured after being air oxidized for periods of 1 to 6 min at 550 °C. The effects of precarbonization temperature on mechanical properties, density, morphology, elemental composition, and microstructure of the carbon fibers during the air oxidation are discussed in this article. The precarbonization process strongly affected the surface properties and mechanical properties of the final oxidized carbon fibers. The carbon fibers developed from the different precarbonization temperatures all had different structures. The carbon fibers that had been precarbonized at 300 °C had a more ordered structure than other fibers after air oxidation. These carbon fibers also had a higher performance than the other fibers. Carbon fibers also showed different oxidation behaviors caused by differences in surface morphology resulting from each different precarbonization temperature. Optimum conditions not only improved the tensile strength and modulus, but also increased the density and oxygen content. Experimental results showed that the tensile strength of the carbon fibers precarbonized at 300 °C increased from 2.4 GPa to 4.3 GPa (80%) after 6 min oxidation at 550 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Hay, J. N., J. Polym. Sci. A1 (6), 2127 (1968).CrossRefGoogle Scholar
2Clarks, A. J. and Bailey, J. F., Nature (London) 243, 146 (1973).CrossRefGoogle Scholar
3Fitzer, E. and Muller, D. J., Carbon 13, 163 (1975).Google Scholar
4Watt, W., US Patent 3 367 812 (1968).Google Scholar
5Herrick, J. W., Air Force Mater. Lab. Techn. Rep. AFML-TR66178 (1966).Google Scholar
6Donnet, J. B., Carbon, 6, 161 (1968).CrossRefGoogle Scholar
7Clark, D., Wadsworth, N. J., and Watt, W., Proc. 2nd Carbon Fiber Conf., Plastics Ins., London (1974), p. 44.Google Scholar
8Bahl, O. P., Mathur, R. B., and Dhami, T. L., Polym. Eng. Sci. 24, 455 (1984).CrossRefGoogle Scholar
9McKee, D. W. and Mimeault, V. J., in Chemistry and Physics of Carbon, edited by Walker, P. L. Jr. and Thrower, P. A. (Marcel Dekker Inc., New York, 1973), p. 151.Google Scholar
10Donnet, J. B. and Bansal, R. C., Carbon Fibers (Marcel Dekker Inc., New York, 1984), Chap. 3.Google Scholar
11Ko, T. H., Ting, H. Y., and Lin, C. H., J. Appl. Polym. Sci. 35, 631 (1988).CrossRefGoogle Scholar
12Ko, T. H., Chiranairadul, P., Ting, H. Y., and Lin, C. H., J. Appl. Polym. Sci. 37, 541 (1989).CrossRefGoogle Scholar
13Ko, T. H., SAMPE Quarterly 22, 13 (1991).Google Scholar
14Ko, T. H., Yang, C. C., and Chang, W. T., Carbon 31, 583 (1993).Google Scholar
15Ko, T. H., J. Appl. Polym. Sci. 42, 1949 (1991).CrossRefGoogle Scholar
16Ko, T. H., Day, T. C., Peng, J. A., and Lin, M. F., Carbon 31, 765 (1993).Google Scholar
17Ko, T. H., Chiranairadul, P., and Lin, C. H., Polym. Eng. Sci. 31, 1618 (1991).CrossRefGoogle Scholar
18Bennett, S. C. and Johnson, D. J., Carbon 17, 25 (1979).CrossRefGoogle Scholar
19Stein, S. E. and Brown, R. L., Carbon 23, 105 (1985).CrossRefGoogle Scholar
20Balasubramanian, M., Jain, M. K., Bhattacharya, S. K., and Abhiraman, A. S., J. Mater. Sci. 22, 3864 (1987).CrossRefGoogle Scholar
21Ko, T. H., Carbon (1995, in press).Google ScholarPubMed
22Gibson, D. W., 18th Int. SAMPE Symp. 18, 165 (1973).Google Scholar
23Cullity, B. D., Elements of X-ray Diffraction (Addison-Wesley, Reading, MA, 1978), Chap. 3.Google Scholar
24Molleyre, F. and Bastick, M., Proc. Conf. Carbon '76, Baden-Baden (Deutsche Keram. Gesell., 1976), p. 500.Google Scholar
25Oberlin, A., Carbon 17, 7 (1979).CrossRefGoogle Scholar
26Oberlin, A. and Oberlin, M., J. Microsc. 132, 353 (1983).CrossRefGoogle Scholar
27Ko, T. H., J. Appl. Polym. Sci. 43, 589 (1991).CrossRefGoogle Scholar
28Moreton, R., Fibre Sci. Technol. 1, 273 (1968).CrossRefGoogle Scholar
29Johnson, J. W., Appl. Polym. Symp., No. 9, 229 (1969).Google Scholar
30Johnson, J. W. and Thome, D. J., Carbon 7, 659 (1969).CrossRefGoogle Scholar
31Moreton, R. and Watt, W., Nature (London) 247, 360 (1974).CrossRefGoogle Scholar
32Jones, J. B., Barr, J. B., and Smith, R. E., J. Mater. Sci. 15, 2455 (1980).CrossRefGoogle Scholar
33Reynolds, W. N. and Sharp, J. V., Carbon 12, 103 (1974).CrossRefGoogle Scholar
34Johnson, D. J., J. Phys. D: Appl. Phys. 20, 286 (1987).CrossRefGoogle Scholar
35Bennett, S. C., Johnson, D. J., and Johnson, W., J. Mater. Sci. 18, 3337 (1983).CrossRefGoogle Scholar