Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-04T05:27:50.437Z Has data issue: false hasContentIssue false

Characterization of self-organized crystalline Au nanoparticles embedded in epitaxially grown SrTiO3

Published online by Cambridge University Press:  08 April 2015

Hendrik Bernhardt*
Affiliation:
Institute of Optics and Quantum Electronics, Friedrich Schiller University Jena, D-07743 Jena, Germany; and Helmholtz Institute Jena, D-07743 Jena, Germany
Christian Katzer
Affiliation:
Institute of Solid State Physics, Friedrich Schiller University Jena, D-07743 Jena, Germany
Andreas Undisz
Affiliation:
Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, D-07743 Jena, Germany
Martin Drüe
Affiliation:
Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, D-07743 Jena, Germany
Markus Rettenmayr
Affiliation:
Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, D-07743 Jena, Germany
Ingo Uschmann
Affiliation:
Institute of Optics and Quantum Electronics, Friedrich Schiller University Jena, D-07743 Jena, Germany; and Helmholtz Institute Jena, D-07743 Jena, Germany
Frank Schmidl
Affiliation:
Institute of Solid State Physics, Friedrich Schiller University Jena, D-07743 Jena, Germany
*
a)Address all correspondence to this author. e-mail: hendrik.bernhardt@uni-jena.de
Get access

Abstract

Crystalline Au nanoparticles embedded in epitaxially grown SrTiO3 layers were prepared by an annealing and coating procedure of Au seed layers on SrTiO3 (STO) substrates. X-ray diffraction and transmission electron microscopy measurements were performed to investigate the size, shape, and deformation of the particles and their crystal orientation. The shape and size of the crystalline Au nanoparticles can be tuned by controlling the Au seed layer thickness and single crystalline elliptically shaped Au nanoparticles have been generated. Furthermore, the orientation of the surrounding SrTiO3 matrix changes significantly from homoepitaxially grown (001) to secondary (111) and (011) orientations for Au seed layers that are thicker than 4 nm. This is of great interest for modifying the electrical properties of SrTiO3 layers, whereas the anisotropically shaped crystalline particles are relevant for optical applications, due to localized surface plasmon resonances.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sirinakis, G., Siddique, R., Monokroussos, C., Carpenter, M.A., and Kaloyeros, A.E.: Microstructure and optical properties of Au–Y2O3-stabilized ZrO2 nanocomposite films. J. Mater. Res. 20, 2516 (2005).CrossRefGoogle Scholar
Ruffino, F., Grimaldi, M.G., Bongiorno, C., Giannazzo, F., Roccaforte, F., and Raineri, V.: Microstructure of Au nanoclusters formed in and on SiO2. Superlattices Microstruct. 44, 588 (2008).CrossRefGoogle Scholar
Cho, S., Lee, S., Lee, T.S., Cheong, B., Kim, W.M., and Lee, K-S.: Microstructural effect on optical properties of Au:SiO2 nanocomposite waveguide films. J. Appl. Phys. 102, 123501 (2007).CrossRefGoogle Scholar
Torrell, M., Kabir, R., Cunha, L., Vasilevskiy, M.I., Vaz, F., Cavaleiro, A., Alves, E., and Barradas, N.P.: Tuning of the surface plasmon resonance in TiO2/Au thin films grown by magnetron sputtering: The effect of thermal annealing. J. Appl. Phys. 109, 074310 (2011).CrossRefGoogle Scholar
Céspedes, E., Babonneau, D., de Sousa Meneses, D., Prieto, C., Fonda, E., Lyon, O., Briand, E., and Traverse, A.: Effects of Au layer thickness and number of bilayers on the properties of Au/ZnO multilayers. J. Appl. Phys. 109, 094308 (2011).CrossRefGoogle Scholar
Buso, D., Pacifico, J., Martucci, A., and Mulvaney, P.: Gold-nanoparticle-doped TiO2 semiconductor thin films: Optical characterization. Adv. Funct. Mater. 17, 347 (2007).CrossRefGoogle Scholar
Okumu, J., Dahmen, C., Sprafke, A.N., Luysberg, M., von Plessen, G., and Wuttig, M.: Photochromic silver nanoparticles fabricated by sputter deposition. J. Appl. Phys. 97, 094305 (2005).CrossRefGoogle Scholar
Konstantinović, Z., del Muro, M.G., Varela, M., Batlle, X., and Labarta, A.: Particle growth mechanisms in Ag–ZrO2 and Au–ZrO2 granular films obtained by pulsed laser deposition. Nanotechnology 17, 4106 (2006).CrossRefGoogle Scholar
Christke, S., Katzer, C., Grosse, V., Schmidl, F., Schmidl, G., Fritzsche, W., Petschulat, J., Pertsch, T., and Rettenmayr, M.: Optical resonances of self-organized monocrystalline Au nanoparticles embedded in SrTiO3 matrix. Opt. Mater. Express 1, 890 (2011).CrossRefGoogle Scholar
Katzer, C., Stahl, C., Michalowski, P., Treiber, S., Schmidl, F., Seidel, P., Albrecht, J., and Schütz, G.: Gold nanocrystals in high-temperature superconducting films: Creation of pinning patterns of choice. New J. Phys. 15, 113029 (2013).CrossRefGoogle Scholar
Katzer, C., Schmidt, M., Michalowski, P., Kuhwald, D., Schmidl, F., Grosse, V., Treiber, S., Stahl, C., Albrecht, J., Hübner, U., Undisz, A., Rettenmayr, M., Schütz, G., and Seidel, P.: Increased flux pinning in YBa2Cu3O7−δ thin-film devices through embedding of Au nanocrystals. Europhys. Lett. 95, 68005 (2011).CrossRefGoogle Scholar
Au, K., Gao, X.S., Wang, J., Bao, Z.Y., Liu, J.M., and Dai, J.Y.: Enhanced resistive switching effect in Ag nanoparticle embedded BaTiO3 thin films. J. Appl. Phys. 114, 027019 (2013).CrossRefGoogle Scholar
Lee, C., Kim, I., Shin, H., Kim, S., and Cho, J.: Nonvolatile memory properties of Pt nanoparticle-embedded TiO2 nanocomposite multilayers via electrostatic layer-by-layer assembly. Nanotechnology 21, 185704 (2010).CrossRefGoogle ScholarPubMed
Katzer, C., Westerhausen, M., Naujok, P., Bernhardt, H., Schmidl, G., Fritzsche, W., Undisz, A., Drüe, M., Rettenmayr, M., and Schmidl, F.: Matrix induced in-situ growth of crystalline Au nanoparticles for photonic applications. Proc. SPIE 8807, Nanophotonic Materials X, 88070K-1-88070K-9 (September 13, 2013).Google Scholar
Dreaden, E., Alkilany, A.M., Huang, X., Murphy, C.J., and El-Sayed, M.A.: The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 41, 2740 (2012).CrossRefGoogle ScholarPubMed
Dykman, L. and Khlebtsov, N.: Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chem. Soc. Rev. 41, 2256 (2012).CrossRefGoogle ScholarPubMed
Ming, T., Suntivich, J., May, K.J., Stoerzinger, K.A., Kim, D.H., and Shao-Horn, Y.: Visible light photo-oxidation in Au nanoparticle sensitized SrTiO3:Nb photoanode. J. Phys. Chem. C 170, 15532 (2013).CrossRefGoogle Scholar
Grosse, V., Schmidl, F., and Seidel, P.: Observation of a Coulomb blockade in strontium titanate thin films. Appl. Phys. Lett. 100, 203110 (2012).CrossRefGoogle Scholar
Jiang, H.G., Rühle, M., and Lavernia, E.J.: On the applicability of the x-ray diffraction line profile analysis in extracting grain size and microstrain in nanocrystalline materials. J. Mater. Res. 14, 549 (1999).CrossRefGoogle Scholar
Francis, A.J. and Salvador, P.A.: Crystal orientation and surface morphology of face-centered-cubic metal thin films deposited upon single-crystal ceramic substrates using pulsed laser deposition. J. Mater. Res. 22, 89 (2007).CrossRefGoogle Scholar
Spieß, L., Teichert, G., Schwarzer, R., Behnken, H., and Genzel, C.: Moderne Röntgenbeugung: Röntgendiffraktometrie für Materialwissenschaftler, Physiker und Chemiker, 2. Aufl. (Vieweg + Teubner, Wiesbaden, Germany, 2009); pp. 80, 81.CrossRefGoogle Scholar
Yang, Y., Yao, J., Li, J., Das, J., and Viehland, D.: Multi-orientation patterned deposition of BaTiO3 thin films using an Au buffer layer. Thin Solid Films 518, 5806 (2010).CrossRefGoogle Scholar
Bowen, D.K. and Tanner, B.K.: High Resolution X-ray Diffractometry and Topography, 1st ed. (Taylore & Francis, London, England, 1998); pp. 14, 42.CrossRefGoogle Scholar
Scherrer, P.: Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Ges. Wiss. Goettingen, Math. Phys. K1(2), 98 (1918).Google Scholar
Langford, J.I. and Wilson, A.J.C.: Scherrer after sixty years: A survey and some new results in the determination of crystallite size. J. Appl. Cryst. 11, 102 (1978).CrossRefGoogle Scholar
Browning, N.D., Buban, J.P., Moltaji, H.O., Pennycook, S.J., Duscher, G., Johnson, K.D., Rodrigues, R.P., and Dravid, V.P.: The influence of atomic structure on the formation of electrical barriers at grain boundaries in SrTiO3. Appl. Phys. Lett. 74, 2638 (1999).CrossRefGoogle Scholar
Zhang, Z., Sigle, W., De Souza, R.A., Kurtz, W., Maier, J., and Rühle, M.: Comparative studies of microstructure and impedance of small-angle symmetrical and asymmetrical grain boundaries in SrTiO3. Acta Mater. 53, 5007 (2005).CrossRefGoogle Scholar
Merkle, R. and Maier, J.: How is oxygen incorporated into oxides? A comprehensive kinetic study of a simple solid-state reaction with SrTiO3 as a model material. Angew. Chem. Int. Ed. 47, 3874 (2008).CrossRefGoogle Scholar
Rozenberg, M.J., Sánchez, M.J., Weht, R., Acha, C., Gomez-Marlasca, F., and Levy, P.: Mechanism for bipolar resistive switching in transition-metal oxides. Phys. Rev. B 81, 115101 (2010).CrossRefGoogle Scholar
Muenstermann, R., Menke, T., Dittmann, R., and Waser, R.: Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Adv. Mater. 22, 4819 (2010).CrossRefGoogle ScholarPubMed
Szot, K., Speier, W., Bihlmayer, G., and Waser, R.: Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater. 5, 312 (2006).CrossRefGoogle ScholarPubMed