Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-02T18:09:54.170Z Has data issue: false hasContentIssue false

Characterization of striations in silicon wafers by a multipass Fabry-Pérot Rayleigh-Brillouin scattering spectrometer

Published online by Cambridge University Press:  03 March 2011

Lu Taijing
Affiliation:
Department of Physics, National University of Singapore, Lower Kent Ridge Road, Singapore 0511, Republic of Singapore
S.C. Ng
Affiliation:
Department of Physics, National University of Singapore, Lower Kent Ridge Road, Singapore 0511, Republic of Singapore
Get access

Abstract

Swirls and oxidation stacking faults (OSF) ring-bands in the near surface region of Si crystals have been detected and characterized by a 180°backscattering Rayleigh-Brillouin spectrometer using an argon-ion laser as its light source. In FZ Si wafers with swirls, the central region exhibits high scattered light with random undulation, the peripheral region with swirls shows a periodic undulation of scattered light intensity, while the region in-between is a nearly uniform zone of low scattered light intensity. In contrast to this, the CZ Si wafers with OSF ring-bands display a low uniformly scattered light background with a high undulated scattered light zone corresponding to the OSF ring-band. The scattered light intensity and its structure in the OSF ring-band vary with the heat-treatment conditions. The features of scattered light detected by the scattering spectrometer are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Tsuya, H. and Matsui, J., Oyubutsuri 60, 752 (1991).Google Scholar
2Takasu, S., Oyubutsuri 61, 374 (1992).Google Scholar
3Taijing, Lu, Toyoda, K., Nango, N., and Ogawa, T., J. Cryst. Growth 108, 482 (1991).CrossRefGoogle Scholar
4Taijing, Lu, Toyoda, K., Nango, N., and Ogawa, T., J. Cryst. Growth 114, 64 (1991).CrossRefGoogle Scholar
5Abe, T., Takeno, H., Ushio, S., and Iba, K., Proc. STEP/Microroughness '92, Tokyo, Japan, May 25, 1992, pp. 2530.Google Scholar
6Wada, H. and Moriya, K., J. Cryst. Growth 129, 405 (1993).CrossRefGoogle Scholar
7Ng, S. C. and Taijing, Lu, J. Cryst. Growth 131, 265 (1993).CrossRefGoogle Scholar
8Harley, R. T., J. Phys. E: Sci. Instrum. 12, 255 (1975).CrossRefGoogle Scholar
9Teh, H. C., Ng, S. C., Hosea, T. J. C., and Rajaratnam, A., J. Singapore National Academy of Science 13, 75 (1984).Google Scholar
10Ng, S. C., Chan, T. F., and Teh, H. C., J. Microcomp. Appl. 15, 137 (1992).CrossRefGoogle Scholar
11Secco d'Aragona, F., J. Electrochem. Soc. 119, 948 (1972).CrossRefGoogle Scholar
12Plaskett, T. S., Trans. Metall. Soc. AIME 233, 809 (1965).Google Scholar
13Abe, T., Abe, Y., and Chikawa, J., Proc. 2nd Int. Symp. Silicon Materials Science and Technology, Chicago (Electrochemical Society, Pennington, NJ, 1973), p. 95.Google Scholar
14Chikawa, J. and Shirai, S., J. Cryst. Growth 39, 328 (1977).CrossRefGoogle Scholar
15Booker, G. B. and Stickler, R., Philos. Mag. 11, 1303 (1965).CrossRefGoogle Scholar
16Hasebe, M., Takeoka, Y., Shinoyama, S., and Naito, S., Jpn. J. Appl. Phys. 28, L744 (1989).CrossRefGoogle Scholar
17Shinoyama, S., Hasebe, M., and Yamauchi, T., Oyubutsuri 60, 766 (1991).Google Scholar
18Petroff, P. M. and DeKock, A. J. R., J. Cryst. Growth 35, 345 (1976).CrossRefGoogle Scholar
19Petroff, P. M. and DeKock, A. J. R., J. Cryst. Growth 36, 4 (1976).CrossRefGoogle Scholar
20van de Hulst, H. C., Light Scattering by Small Particles (Dover, New York, 1981).Google Scholar
21Moriya, K., J. Cryst. Growth 94, 182 (1989).CrossRefGoogle Scholar