Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-14T19:14:36.311Z Has data issue: false hasContentIssue false

Characterization of thermal plasma CVD diamond coatings and the intermediate SiC phase

Published online by Cambridge University Press:  31 January 2011

C. Tsai
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
W. Gerberich
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
Z.P. Lu
Affiliation:
Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455
J. Heberlein
Affiliation:
Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455
E. Pfender
Affiliation:
Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455
Get access

Abstract

Diamond films have been successfully deposited by DC thermal plasma jet CVD at a rate of 40 μm/h under atmospheric and subatmospheric pressures. Transmission electron microscopy (TEM) has been used for the characterization of the diamond films and the intermediate phase. The orientation and the distribution of β-SiC at the interface between the diamond and silicon substrate have been observed using selected-area electron diffraction with the associated dark-field images. X-ray diffraction, scanning electron microscopy, and Raman spectroscopy are used for the characterization of the produced diamond films. Potential applications of selected-area channeling patterns are discussed for investigating the correlations between the growth direction and the crystalline perfection.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Yarbrough, W. A. and Messier, R., Science 247, 688 (1990).CrossRefGoogle Scholar
2.Spear, K. E., J. Am. Ceram. Soc. 72, 171 (1989).CrossRefGoogle Scholar
3.Angus, J. C., Buck, F. A., Sunkara, M., Groth, T. F., Hayman, C. C., and Gat, R., MRS Bull., October 3 (1989).Google Scholar
4.DeVries, R. C., Ann. Rev. Mater. Sci. 17, 167 (1987).CrossRefGoogle Scholar
5.Matsumoto, S., Sato, Y., Tsutsumi, M., and Setaka, N., J. Mater. Sci. 17, 3106 (1982).CrossRefGoogle Scholar
6.Badzian, A. R., Badzian, T., Roy, R., Messier, R., and Spear, K. E., Mater. Res. Bull. XXIII, 531 (1988).CrossRefGoogle Scholar
7.Matsumoto, S., Hino, M., and Kobayashi, T., Appl. Phys. Lett. 51, 737 (1987).CrossRefGoogle Scholar
8.Suzuki, K., Sawabe, A., and Inuzuka, T., Jpn. J. Appl. Phys. 29, 153 (1990).CrossRefGoogle Scholar
9.Singh, B., Mesker, O. R., Levine, A. W., and Arie, Y., Appl. Phys. Lett. 52, 1658 (1988).CrossRefGoogle Scholar
10.Tzeng, Y., Cutshaw, C., Phillips, R., Srivinyunon, T., Ibrahim, A., and Loo, B. H., Appl. Phys. Lett. 56, 134 (1990).CrossRefGoogle Scholar
11.Ohtake, N. and Yoshikawa, M., J. Electrochem. Soc. 137, 71 (1990).CrossRefGoogle Scholar
12.Kurihara, K., Sasaki, K., Kawarada, M., and Koshino, N., Appl. Phys. Lett. 52, 437 (1988).CrossRefGoogle Scholar
13.Kim, W. K. and Whang, K. W., in Proc. of 2nd Int. Conf. on New Diamond Set and Technol., Crystal City, VA, September 23–27, to be published (1990).Google Scholar
14.Lu, Z. P., Stachowicz, L., Kong, P., Heberlein, J., and Pfender, E., “Diamond Synthesis by DC Thermal Plasma CVD at One Atmosphere,” accepted for publication in Plasma Chemistry and Plasma Processing (1990).CrossRefGoogle Scholar
15.Matsumoto, S. and Matsui, Y., J. Mater. Sci. 18, 1785 (1983).CrossRefGoogle Scholar
16.Fujimori, N., Imai, T., and Doi, A., Vacuum 36, 99 (1986).CrossRefGoogle Scholar
17.Narayan, J., Srivatsa, A. R., Peters, M., Yokota, S., and Ravi, K. V., Appl. Phys. Lett. 53, 1823 (1988).CrossRefGoogle Scholar
18.Williams, B. E. and Glass, J. T., J. Mater. Res. 4, 373 (1989).CrossRefGoogle Scholar
19.Zhu, W., Randall, C. A., Badzian, A. R., and Messier, R., J. Vac. Sci. Technol. A 7, 2315 (1989).CrossRefGoogle Scholar
20.Kobayashi, K., Karasawa, S., and Watanabe, T., J. Cryst. Growth 99, 1211 (1990).CrossRefGoogle Scholar
21.Ma, G-H. M., Hirose, Y., Amanuma, S., McClure, M., Prater, J. T., and Glass, J. T., “Microstructural Studies by TEM of Diamond Films Grown by Combustion Flame,” in Proc. of 2nd Int. Conf. on New Diamond Sci. and Technol., Crystal City, VA, September 23–27, to be published (1990).Google Scholar
22.Coates, D. G., Philos. Mag. 16, 1179 (1967).CrossRefGoogle Scholar
23.Kaczorowski, M. and Gerberich, W. W., Metallurg. Sci. Technol. 5, 11 (1987).Google Scholar
24.Joy, D. C., Newbury, D. E., and Davidson, D. L., J. Appl. Phys. 53, R81 (1982).CrossRefGoogle Scholar
25.Davidson, D. L., Int. Metals Rev. 29, 75 (1984).Google Scholar
26.Lu, Z. P. and Pfender, E., “Synthesis of A1N Powder in a Triple Torch Plasma System,” in Proc. of Ninth Int. Symp. on Plasma Chem., edited by d'Agostino, R., Pugnochiuso, Italy, September 4–8, 675. (1989).Google Scholar
27.Belton, D. N., Harris, S. J., Schmieg, S. J., Weiner, A. M., and Perry, T. A., Appl. Phys. Lett. 54 (5), 416 (1990).CrossRefGoogle Scholar
28.Kaae, J. L., Gantzel, P. K., Chin, J., and West, W. P., J. Mater. Res. 5, 1480 (1990).CrossRefGoogle Scholar