Published online by Cambridge University Press: 03 July 2013
Zeolite-based supports for inorganic membranes intended for gas separation have the potential to increase the resistance to thermal shock-induced cracking compared with ceramic or metallic substrates. We have studied the effect of exposure at 90 °C of hierarchically porous silicalite-I substrates to aqueous solutions at pH 2.0, 10.6, and 13.0 for periods up to 168 h. Silicalite-I supports were produced in binder-free form by pulsed current processing and using clay-binders by conventional thermal treatment. Long-term (168 h) acid and alkali treatment of the silicalite-I substrates results in a slight removal of silicon (in acid) and aluminum (in alkali) and does not affect the specific surface area and the crystalline microporous structural features but broadens the size distribution of the macropores. The mechanical strength remains unchanged after exposure to both alkaline and acidic solutions and the binder-free substrates display more than 20 times higher strength than the binder-containing materials.