Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T18:34:23.204Z Has data issue: false hasContentIssue false

Chemical interaction between nitrogen and iron in silica glasses via sequential ion-implantation

Published online by Cambridge University Press:  31 January 2011

Tetsuhiko Isobe
Affiliation:
Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223, Japan
Tamotsu Toriyama
Affiliation:
Department of Energy Science and Engineering, Musashi Institute of Technology, Tamazutsumi 1-28-1, Setagaya-ku, Tokyo 158, Japan
Robert A. Weeks
Affiliation:
Department of Applied and Engineering Science, Vanderbilt University, Nashville, Tennessee 37235
Raymond A. Zuhr
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Get access

Abstract

Silica glass plates (Corning 7940 excimer grade) were implanted sequentially with N+ at 52 keV to different doses, ranging from 0 to 1.2 × 1017 ions cm−2, and then with Fe+ at 160 keV to 6 × 1016 ions cm−2 at room temperature and 4 µA cm−2. The intensity of ferromagnetic magnetic resonance (FMR) absorption and the magnetization calculated by the angular dependence of the FMR field reach maxima at an N/Fe atomic ratio ∼0.2. Two peaks due to Fe 2p3/2 electron are observed at 707.2 ± 0.2 and 710.9 ± 0.2 eV in the x-ray photoelectron spectra. The intensity of the former relative to the latter decreases with increasing the N dose. The conversion electron Mössbauer spectrum reveals the formation of superparamagnetic iron nitride as well as the existence of Fe2+ and Fe3+ in silica when implanting N+ to 7.5 × 1015 ions cm−2 and then Fe+ to 6 × 1016 ions cm−2 at N/Fe = 0.125. These results suggest that sequential ion-implantation of N+ and Fe+ produces iron nitride in silica glasses.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Weeks, R. A., in Materials Science and Technology, edited by Zarsegyki, J. (VCH, Weinheim, Germany, 1991), Vol. 9, p. 331.Google Scholar
2.White, C. W., McHargue, C. J., Sklad, P. S., Boatner, L. A., and Farlow, G. C., Mater. Sci. Rep. 4, 41 (1989).CrossRefGoogle Scholar
3.White, C. W., Zhou, D. S., Zuhr, R. A., and Magruder, R. H., Trans. Mat. Res. Soc. Jpn. 17, 553 (1994).Google Scholar
4.Magruder, R. H., III, Yang, L., Haglund, R. F., Jr., White, C. W., Dorsinville, R., and Alfano, R. R., Appl. Phys. Lett. 62, 1730 (1993).CrossRefGoogle Scholar
5.Perez, A., Nucl. Instrum. Methods B1, 621 (1984).CrossRefGoogle Scholar
6.Hosono, H., Jpn. J. Appl. Phys. 32, 3892 (1993).CrossRefGoogle Scholar
7.Perez, A., Treilleux, M., Capra, T., and Griscom, D. L., J. Mater. Res. 2, 910 (1987).CrossRefGoogle Scholar
8.Perez, A., Marest, G., Sawicka, B. D., Sawicki, J. A., and Tyliszozak, T., Phys. Rev. B 28, 1227 (1983).CrossRefGoogle Scholar
9.Futagami, T., Aoki, Y., Yoda, O., Nagai, S., and Rück, D. M., Nucl. Instrum. Methods Phys. Res. Sect. B80/81, 1168 (1993).CrossRefGoogle Scholar
10.Ramos, S. M. M., Canut, B., Gea, L., Romana, L., Brusq, J. Le, Thevenard, P., and Brunel, M., Nucl. Instrum. Methods Phys. Res. Sect. B59/60, 1201 (1991).CrossRefGoogle Scholar
11.Bertoncello, R., Trivillin, F., Cattaruzza, E., Mazzoldi, P., Arnold, G. W., Battaglin, G., and Catalano, M., J. Appl. Phys. 77 (3), 1294 (1995).CrossRefGoogle Scholar
12.Hosono, H., Nucl. Instrum. Methods Phys. Res. Sect. B65, 375 (1992).CrossRefGoogle Scholar
13.Zuhr, R. A. and Magruder, R. H., III, J. Surf. Sci. Jpn. 18 (5), 269 (1997).CrossRefGoogle Scholar
14.Hosono, H., Phys. Rev. Lett. 74 (1), 110 (1995).CrossRefGoogle Scholar
15.Isobe, T., Weeks, R. A., and Zuhr, R. A., in Ion-Solid Interactions for Materials Modification and Processing, edited by Poker, D. B., Ila, D., Cheng, Y. T., Harriott, L. R., and Sigmon, T. W. (Mater. Res. Soc. Symp. Proc. 396, Pittsburgh, PA, 1996), p. 411.Google Scholar
16.Griscom, D. L., Krebs, J. J., Perez, A., and Treilleux, M., Nucl. Instrum. Methods Phys. Res. Sect. B32, 272 (1988).CrossRefGoogle Scholar
17.Whichard, G. and Weeks, R. A., J. Non-Cryst. Solids 112, 1 (1989).Google Scholar
18.Wallance, W. E. and Huang, M. Q., J. Appl. Phys. 76, 6648 (1994).CrossRefGoogle Scholar
19.Jack, K. H., J. Appl. Phys. 76, 6620 (1994).Google Scholar
20.Sugita, Y., Takahashi, H., Komuro, M., Mitsuoka, K., and Sakuma, A., J. Appl. Phys. 76, 6637 (1994).CrossRefGoogle Scholar
21.Mitsuoka, K., Miyajima, H., Ino, H., and Chikazumi, S., J. Phys. Soc. Jpn. 53, 2381 (1984).CrossRefGoogle Scholar
22.Biersack, J. P. and Haggnarl, L. G., Nucl. Instrum. Methods 174, 257 (1980).CrossRefGoogle Scholar
23.Bertoncello, R., Trivillin, F., Cattaruzza, E., Mazzoldi, P., Anold, G. W., Battaglin, G., and Catalano, M., J. Appl. Phys. 77 (3), 1294 (1995).CrossRefGoogle Scholar
24.Mills, P. and Sullivan, J. L., J. Phys. D, Appl. Phys. 16, 723 (1983).Google Scholar
25.Diekmann, W., Panzner, G., and Grabke, H. J., Surf. Sci. 218, 507 (1989).CrossRefGoogle Scholar
26.Lo, C., Krishnaswamy, S. V., and Mulay, L. N., J. Appl. Phys. 53, 2745 (1982).CrossRefGoogle Scholar
27.Panda, R. N. and Gajbhiye, N. S., J. Appl. Phys. 81, 335 (1997).CrossRefGoogle Scholar
28.Elias, D. J. and Linnett, J. W., Trans. Faraday Soc. 65, 2673 (1962).CrossRefGoogle Scholar
29.Johnson, D. P., Solid State Commun. 7, 1785 (1969).CrossRefGoogle Scholar
30.Kündig, W., Cape, J. A., Lindquist, R. H., and Constrabaris, G., J. Appl. Phys. 38, 947 (1967).CrossRefGoogle Scholar
31.Kruger, M. B., Jeanloz, R., Pasternak, M. P., Taylor, R. D., Snyder, B. S., Stacy, A. M., and Bohlen, S. R., Science 255, 703 (1992).CrossRefGoogle Scholar
32.Eibschütz, M. and Ganiel, U., Solid State Commun. 5, 267 (1967).Google Scholar
33.Kündig, W. and Bömmel, H., Constabaris, G., and Lindquist, R. H., Phys. Rev. 142, 327 (1966).CrossRefGoogle Scholar
34.Haneda, K. and Morrish, A. H., Solid State Commun. 22, 779 (1977).CrossRefGoogle Scholar
35.Kopcewicz, M., Jagielski, J., Turos, A., and Williamson, D. L., J. Appl. Phys. 71, 4217 (1992).Google Scholar
36.Chen, G. M., Jaggl, N. K., Butt, J. B., Yeh, E. B., and Schwartz, L. H., J. Phys. Chem. 87, 5326 (1983).CrossRefGoogle Scholar
37.Marest, G., Diff. Def. Data Pt. A 57–58, 273 (1988).CrossRefGoogle Scholar
38. Greenwood and Gibb, T. C., in Mössbauer Spectroscopy (Chapman and Hall, London, 1971), Chap. 10, p. 239.Google Scholar
39.Griscom, D. L., J. Non-Cryst. Solids 42, 287 (1980).Google Scholar
40.Galasso, F. S., Structure and Properties of Inorganic Solids (Pergamon, Oxford, 1970), p. 61.Google Scholar
41.Samuelsen, E. J. and Shirane, G., Phys. Status Solidi 42, 241 (1970).Google Scholar
42.Ballet, O., Fuess, H., Wacker, K., Untersteller, E., Treutmann, W., Hellner, E., and Hosoya, S., J. Phys. Condens. Matter 1, 4955 (1989).Google Scholar