Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-30T21:16:19.204Z Has data issue: false hasContentIssue false

Chemical interaction of BaO-CuO-rich melts with Y2O3

Published online by Cambridge University Press:  18 February 2016

N. Pellerin
Affiliation:
Centre de Recherches sur la Physique des Hautes Témperatures, C.N.R.S., 45071 Orléans Cedex 2, France
G. Jouan
Affiliation:
Centre de Recherches sur la Physique des Hautes Témperatures, C.N.R.S., 45071 Orléans Cedex 2, France
P. Odier
Affiliation:
Centre de Recherches sur la Physique des Hautes Témperatures, C.N.R.S., 45071 Orléans Cedex 2, France
Get access

Extract

Chemical interaction between ceramic Y2O3 and Y - Ba-Cu-O liquid with composition close to that of the ternary eutectic is discussed. Intense interaction is observed in the range 930–960 °C that results in the formation of Y2BaCuO5 above 940 °C and YBa2Cu3O6+x plus CuO below 940 °C. At the interface with Y2O3 there is an additional portion containing Y2Cu2O5 or YCuO2. This temperature threshold is exactly that of the peritectic reaction Y2BaCuO5 + L(pl) → YBa2Cu3O6+x + CuO which then appears to control this chemical interaction. The microstructure of the transformed area is oriented in a way that may be used for texturing or crystal growing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jin, S. and Tiefel, T.H., Appl. Phys. Lett. 52, 2074 (1988).Google Scholar
2. Murakami, M., “Flux pinning of melt processed YBCO superconductors and their applications,” in Studies of High Temperature Superconductors, edited by Narlikar, A. V. (Nova Science Publishers, Commack, NY, 1991).Google Scholar
3. Phillips, J.M., Siegal, M.P., Hou, S.Y., Tiefel, T.H., and Marshall, J.H., Proc. MRS Spring ’92 (in press).Google Scholar
4. Marfaing, J., Bettahi, A., Odier, P., and Boulesteix, C., submitted to Physica Status Solidi.Google Scholar
5. Licci, F., Frigeri, C., and Scheel, H.J., J. Cryst. Growth 112, 606 (1991).Google Scholar
6. Dembinski, K., Gervais, M., Odier, P., Coutures, J., and Coutures, J.P., Mater. Sci. Eng. B5, 345 (1990).Google Scholar
7. Pellerin, N., Gervais, M., and Odier, P., J. Mater. Res. 7,558 (1992).Google Scholar
8. Pellerin, N., Gervais, M., and Odier, P., Proc. MRS Spring ’92 (in press).Google Scholar
9. Oishi, A., Teshima, H., Ohata, K., Izumi, H., Kawamoto, S., Morishita, T., and Tanaka, S., Appl. Phys. Lett. 59, 1902 (1991).Google Scholar
10. Wecker, J., Matthee, T., Freidl, G., and Behner, H., MRS Spring ’92, to be published.Google Scholar
11. Berkowski, M., Bowen, P., Liechti, T., and Scheel, H., J. Am. Ceram. Soc. 75, 1005 (1992).Google Scholar
12. Douy, A. and Odier, P., Mater. Res. Bull. XXIV, 1119 (1989).Google Scholar
13. Gervais, M., Odier, P., and Coutures, J. P., Mater. Sci. Eng. B8, 287 (1991).Google Scholar
14. Odier, P., Pellerin, N., and Gervais, M., Proc. 2nd ECRS, Augsburg, September 1991 (in press).Google Scholar
15.In Phase Diagrams for High Tc Superconductors, Phase Diagram Ceramist, edited by Whitter, J. D. and Roth, R. S., National Inst. Standards and Technol. (The Am. Ceram. Soc., Westerville, OH, 1991).Google Scholar
16. Odier, P., unpublished results.Google Scholar
17. Licci, F., Sheel, H.J., and Tissot, P., J. Cryst. Growth 112, 600 (1991).Google Scholar
18. Flor, G., Scavini, M., Ansemi-Tamburini, V., and Spinoli, G., Solid State Ionics 43, 77 (1990).Google Scholar
19. Colin, G., private communication.Google Scholar
20. Luo, J.S., Merchant, N., Maroni, V.A., Gruen, D.M., Tani, B.S., Sandhage, K.H., and Craven, C.A., Physica C 192, 356 (1992).CrossRefGoogle Scholar