Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T00:19:36.208Z Has data issue: false hasContentIssue false

Chemical Solution Deposition of <100>-oriented SrTiO3 Buffer Layers on Ni Substrates

Published online by Cambridge University Press:  31 January 2011

J. T. Dawley
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185–1411
R. J. Ong
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185–1411
P. G. Clem
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185–1411
Get access

Abstract

Biaxially textured <100>-oriented SrTiO3 films were solution deposited on <100> LaAlO3 single crystals and <100>-oriented polycrystalline Ni tapes. Solution variables including varying titanium alkoxide chain length, inclusion of chelating agents, and inclusion of donor dopant, were investigated for their effect on film orientation, morphology, and oxygen diffusivity. The best <100> SrTiO3 orientation on high lattice mismatch (11%) Ni substrates was achieved through use of a discontinuous nucleation seed layer, which provided nucleation sites for subsequent continuous SrTiO3 films. Increased titanium alkoxide chain lengths appeared to suppress titanium hydrolysis reactions and improve film orientation. 13C nuclear magnetic resonance showed that significant quantities of water were generated due to esterification reactions, which appeared to cause hydrolysis and subsequent orientation degradation in the absence of chelating agents such as acetylacetone.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hammerl, G., Bielefeldt, H., Goetz, B., Schmehl, A., Schneider, C.W., Schulz, R.R., Hilgenkamp, H., and Mannhart, J., IEEE Trans. Appl. Supercond. 11, 2830 (2001).CrossRefGoogle Scholar
Lee, S-G. and Han, T-S., J. Kor. Phys. Soc. 31, 406 (1997).Google Scholar
Strikovsky, M., Linker, G., Gaponov, S., Mazo, L., and Meyer, O., Phys. Rev. B, 45, 12522 (1992).CrossRefGoogle Scholar
Larbalestier, D., Gurevich, A., Feldmann, D.M., and Polyanskii, A., Nature 414, 368 (2001).CrossRefGoogle Scholar
Norton, D.P., Goyal, A., Budai, J.D., Christen, D.K., Kroeger, D.M., Specht, E.D., He, Q., Saffian, B., Paranthaman, M., Klabunde, C.E., Lee, Sales, B.C., and List, F.A., Science 274, 755 (1996); Paranthaman, C. Park, X. Cui, A. Goyal, D.F. Lee, P.M. Martin, T.G. Chirayil, D.T. Verebelyi, D.P. Norton, D.K. Christen, and Kroeger, J. Mater. Res. 15, 2647 (2000); G. Sipos, B. Utz, Schmidt, H.W. Neumueller, and P. Mueller, Physica C 341, 1457 (2000); S.R. Foltyn P.N. Arendt, D.C. Dowden, R.F. De Paula, J.R. Gr;oves, J.K. Coulter, Q.X. Jia, M.P. Maley, and D.E. Peterson, IEEE Trans. Appl. Supercond. 9, 1519 (1999); T.G. Holesinger, S.R. Foltyn, P.N. Arendt, Q.X. Jia, P.C. Dowden, R.F. DePaula, and Groves, IEEE Trans. Appl. Supercond. 11, 3359 (2001); Iijima, K. Kakimoto, and K. Takeda, IEEE Trans. Appl. Supercond. 357, 952 (2001); A. Usoskin, J. Knoke, F. Garcia-Moreno, Issaev, J. Dzick, S. Sievers, and H.C. Freyhardt, IEEE Trans. Appl. Supercond. 11, 3385 (2001); Y. Shiohara and N. Hobara, Physica C 341, 2521 (2000).CrossRefGoogle Scholar
Siegal, M.K., Phillips, J.M., Dover, R.B. van, Tiefel, T.H., and Marshall, J.H., J. Appl. Phys. 68, 6343 (1990).Google Scholar
Hammerl, G., Schmehl, A., Schulz, R.R., Goetz, B., Bielefeldt, H., Schneider, C.W., Hilgenkamp, H., and Mannhart, J., Nature 407, 162 (2000); M.P. Siegal, S.Y. Hou, J.M. Phillips, T.H. Tiefel, and J.H. Marshall, J. Mater. Res. 7, 2658 (1992); Y.M. Wan, M.S. Raven, E.E. Inameti, and B.G. Murray, Vacuum 43, 67 (1992).CrossRefGoogle Scholar
Dimos, D., Chaudari, P., and Mannhart, J., Phys. Rev. B, 41, 4038 (1990).CrossRefGoogle Scholar
Schwartz, R., Chem. Mater. 9, 2325 (1997).CrossRefGoogle Scholar
Lange, F.F., Science 273, 903 (1996).CrossRefGoogle Scholar
Boyce, J.B., Bridges, F., Claeson, T., Geballe, T.H., and Tarascon, J.M., Supercond. Sci. Technol. 4, S343 (1991).CrossRefGoogle Scholar
Dawley, J.T., Clem, P.G., Siegal, M.P., and Overmyer, D.L., J. Mater. Res. 16, 13 (2001); P.C. McIntyre, M.J. Cima, and M.F. Ng, J. Appl. Phys. 68, 4183 (1990).CrossRefGoogle Scholar
Chirayil, T.G., Paranthaman, M., Beach, D.B., Lee, D.F., Goyal, A., Williams, R.K., Cui, X., Kroeger, D.M., Feenstra, R., Verebelyi, D.T., and Christen, D.K., Physica C 336, 63 (2000).CrossRefGoogle Scholar
Sathyamurthy, S. and Salama, K., Physica C 329, 58 (2000).CrossRefGoogle Scholar
Yamagiwa, K., Matsumoto, K., and Hirabayashi, I., J. Mater. Res. 15, 2547 (2000).CrossRefGoogle Scholar
Sheth, A., Lasrado, V., White, M., and Paranthaman, M., IEEE Trans. Appl. Supercond. 9, 1514 (1999).CrossRefGoogle Scholar
Sathyamurthy, S. and Salama, K., Supercond. Sci. Technol. 13, L1 (2000).CrossRefGoogle Scholar
Celik, E., Mutlu, I.H., and Hascicek, Y.S., IEEE Trans. Appl. Supercond. 10, 1162 (2000).CrossRefGoogle Scholar
Schmidt, J.C., Tigges, A., and Schmitz, G.J., Mater. Sci. Eng. B, Solid State Mater. Adv. Technol. 53, 115 (1998).CrossRefGoogle Scholar
Sun, E.Y., Goyal, A., Norton, D.P., Park, C., Kroeger, D.M., Paranthaman, M., and Christen, D.K., Physica C 321, 29 (1999).CrossRefGoogle Scholar
Jackson, T.J., Glowacki, B.A., and Evetts, J.E., Physica C 296, 215 (1998).CrossRefGoogle Scholar
Sheth, A., Schmidt, H., and Lasrado, V., Appl. Supercond. 6, 855 (1998).CrossRefGoogle Scholar
Assink, R.A. and Schwartz, R.W., Chem. Mater. 5, 511 (1993).CrossRefGoogle Scholar
Schwartz, R.W., Clem, P.G., Voigt, J.A., Byhoff, E.R., Stry, M. Van, Headley, T.J., and Missert, N.A., J. Am. Ceram. Soc. 82, 2359 (1999).CrossRefGoogle Scholar
Clem, P.G., Rodriguez, M., Ashley, C.S., and Voigt, J.A., U.S. Patent No. 6 231666 (2001).Google Scholar
Hoffman, W., Hoffmann, S., and Waser, R., Thin Solid Films 305, 66 (1997).CrossRefGoogle Scholar
Miller, K.T. and Lange, F.F., J. Mater. Res. 6, 2387 (1991).CrossRefGoogle Scholar
Chan, N.H. and Smyth, D.M., J. Am. Ceram. Soc. 67, 285 (1984).CrossRefGoogle Scholar
Chan, N.H., Sharma, R.K., and Smyth, D.M., J. Electrochem. Soc. 128, 1762 (1981).CrossRefGoogle Scholar
Desu, S.B. and Payne, D.A., J. Am. Ceram. Soc. 73, 3407 (1990).CrossRefGoogle Scholar
He, L.X. and Li, C.E., J. Mater. Sci. 35, 2477 (2000).CrossRefGoogle Scholar
Megriche, A. and Troccaz, M., Mater. Res. Bull. 33, 569 (1998).CrossRefGoogle Scholar
Brinker, C.J. and Scherer, G.W., Sol-Gel Science, (Academic Press, San Diego, CA, 1990), pp. 4047; D.C. Bradley, R.C. Mehrotra, and D.P. Gaur, Metal Alkoxides (Academic Press, New York, 2000).Google Scholar
Boyle, T.J., Alam, T.M., Tafoya, C.J., Mechenbier, E.R., and Ziller, J.W., Inorg. Chem. 38, 2422 (1999).CrossRefGoogle Scholar
Weldon, M.K. and Friend, C.M., Chem. Rev. 96, 1391 (1996).CrossRefGoogle Scholar
Schwartz, R.W., Voigt, J.A., Tuttle, B.A., Payne, D.A., Reichert, T.L., and DaSalla, R.S., J. Mater. Res. 12, 444 (1997).CrossRefGoogle Scholar
Milne, S.J. and Pyke, S.H., J. Am. Ceram. Soc. 37, 2063 (1998).Google Scholar
Sanchez, C., Livage, J., Henry, M., and Babonneau, F., J. Non-Cryst. Solids 100, 65 (1988).CrossRefGoogle Scholar
Jang, S.I., Choi, B.C., and Jang, H.M., J. Mater. Res. 12, 1327 (1997).CrossRefGoogle Scholar
Cho, S.G. and Johnson, P.F., J. Mater. Sci. 29, 4866 (1994).CrossRefGoogle Scholar
Dawley, J.T., Clem, P.G., Siegal, M.P., Overmyer, D.L., and Rodriguez, M.A., IEEE Trans. Appl. Supercond. 11, 2873 (2001).CrossRefGoogle Scholar
Siegal, M.P., Clem, P.G., Dawley, J.T., Ong, R.J., Rodriguez, M.A., and Overmyer, D.L., Appl. Phys. Lett. 80, 2710 (2000).CrossRefGoogle Scholar
Dawley, J.T., Clem, P.G., Siegal, M.P., and Overmyer, D.L., (submitted, 2000).Google Scholar