Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-30T23:19:02.437Z Has data issue: false hasContentIssue false

Chemical Vapor Deposition of Sr1−xBaxNb2O6 Thin Films Using Metal Alkoxide Precursors

Published online by Cambridge University Press:  31 January 2011

Ruichao Zhang
Affiliation:
Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112
Ren Xu
Affiliation:
Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112
Get access

Abstract

A novel two-step metalorganic chemical vapor deposition process was used in this study to prepare Sr1−xBaxNb2O6 (SBN) thin films. Two thin layers of single-phase SrNb2O6 and BaNb2O6 were deposited alternately on a silicon substrate, and the solid solution of SBN was obtained by high-temperature annealing. The stoichiometry control of the SrNb2O6 and the BaNb2O6 thin films was achieved through deposition process control, according to the evaporation characteristics of double metal alkoxide. The evaporation behavior of double metal alkoxide precursors SrNb2(1-OC4H9)12 and BaNb2(1-OC4H9)12 was studied, and the results were compared with the evaporation of single alkoxide Nb(1-OC4H9)5.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nomura, S., Kojima, H., Hattori, Y., and Kotsuka, H., Jpn. J. Appl. Phys. 33, 1185 (1974).CrossRefGoogle Scholar
2.Glass, A.M., Appl. Phys. Lett. 13, 147 (1968).CrossRefGoogle Scholar
3.Micheron, F. and Trotier, J.C., Ferroelectrics 8, 441 (1974).CrossRefGoogle Scholar
4.Sakamoto, W., Yogo, T., Kikuta, K., Ogiso, K., Kawase, A., and Hirano, S., J. Am. Ceram. Soc. 79, 2283 (1996).CrossRefGoogle Scholar
5.Xu, Y.H., Ferroelectric and Piezoelectric Materials (Science Press, Beijing, People's Republic of China, 1978).Google Scholar
6.Giess, E.A., Scott, B.A., Burns, G., O'Kane, D.F., and Segmuller, A., J. Am. Ceram. Soc. 52, 276 (1969).CrossRefGoogle Scholar
7.Neurgaonkar, R.R., Cory, W.K., Oliver, J.R., Ewbank, M.D., and Hall, W.F., Opt. Eng. 26, 392 (1994).Google Scholar
8.Neurgaonkar, R.R. and Cory, W.K., J. Opt. Soc. Am. B: Opt. Phys. 3, 274 (1986).CrossRefGoogle Scholar
9.Megumi, K., Nagatsuma, N., Kashiwada, Y., and Furuhata, Y., J. Mater. Sci. 11, 1583 (1976).CrossRefGoogle Scholar
10.Neurgaonkar, R.R., Kalisher, M.H., Lim, T.C., Staples, E.J., and Keester, K.L., Mater. Res. Bull. 15, 1235 (1980).CrossRefGoogle Scholar
11.Neurgaonkar, R.R. and Wu, E.T., Mater. Res. Bull. 22, 1095 (1987).CrossRefGoogle Scholar
12.Neurgaonkar, R.R., Santha, I.S., and Oliver, J.R., Mater. Res. Bull. 26, 983 (1991).CrossRefGoogle Scholar
13.Xu, Y., Chen, C.J., Xu, R., and Mackenzie, J.D., Phys. Rev. B: Condens. Matter 44, 35 (1991).CrossRefGoogle Scholar
14.Chen, C.J., Xu, Y., Xu, R., and Mackenzie, J.D., J. Appl. Phys. 69, 1763 (1991).CrossRefGoogle Scholar
15.Xu, R., Xu, Y., Chen, C.J., and Mackenzie, J.D., J. Mater. Res. 5, 916 (1990).CrossRefGoogle Scholar
16.Hirano, S., Togo, T., Kibuta, K., and Ogiso, K., J. Am. Ceram. Soc. 75, 1697 (1992).CrossRefGoogle Scholar
17.Xu, R., J. Mater. Res. 10, 2536 (1995).CrossRefGoogle Scholar
18.Zhang, R. and Xu, R., Integrated Ferroelectrics 18, 197 (1997).CrossRefGoogle Scholar
19.Zhang, R., Hochheiser, P.A., Gardner, J., and Xu, R. (unpublished).Google Scholar
20.Bradley, D.C., Mehrotra, R.C., and Gaur, D.P., Metal Alkoxides (Academic Press, London, United Kingdom, 1978), Chap. 5.Google Scholar
21.Zhang, R., Ph.D. Thesis, University of Utah, Salt Lake City, UT (1999).Google Scholar
22.Kingery, W.D., Bowen, H.K., and Uhlmann, D.R., Introduction to Ceramics (John Wiley & Sons, New York, 1976), p. 131.Google Scholar
23.Deshpande, S.B., Potdar, H.S., Godbole, P.D., and Date, S.K., J. Am. Ceram. Soc. 75, 2581 (1992).CrossRefGoogle Scholar