Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T00:41:45.001Z Has data issue: false hasContentIssue false

The chemistry and superconducting properties of species in the system Bi-Ca-Sr-Cu-O

Published online by Cambridge University Press:  31 January 2011

R. H. Arendt
Affiliation:
General Electric Company, Corporate Research and Development, P.O. Box 8, Schenectady, New York 12301
M. F. Garbauskas
Affiliation:
General Electric Company, Corporate Research and Development, P.O. Box 8, Schenectady, New York 12301
L. L. Schilling
Affiliation:
General Electric Company, Corporate Research and Development, P.O. Box 8, Schenectady, New York 12301
Get access

Abstract

Experimental results are presented on efforts to maximize the content of the phase responsible for the 110 K superconducting transition, Bi2Ca2Sr2Cu3O2 or (2223), in the system Bi–Ca–Sr–Cu–O. It was found that the content of this phase depends not only on the initial composition of the reacting mixture, but also on the presence of PbO, the temperature of reaction, and the duration of the reaction.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Maeda, H., Tanaka, Y., Fukutomi, M., and Asano, T., Jpn. J. Appl. Phys. 27, L209 (1988).CrossRefGoogle Scholar
2 Sheng, Z. Z. and Hermann, A. M., Nature 332, 55 (1988).CrossRefGoogle Scholar
3 Zandbergen, H.W., Huang, Y.K., Menken, M.J.V., Li, J. N., Kadowaki, K., Menovsky, A. A., van Tendeloo, G., and Amelinckx, S., Nature 332, 620 (1988).Google Scholar
4 Greaves, C., Nature 334, 193 (1988).Google Scholar
5 Hermann, A. M., Sheng, Z. Z., Kiehl, W., Marsh, D., Arammash, F., Ali, A. El, Mooney, D., Sheng, L., Woolam, J. A., and Ahmed, A., Appl. Phys. Commun. 7, 275 (1987).Google Scholar
6 Hermann, A. M. and Sheng, Z. Z., Appl. Phys. Lett. 51, 1854 (1987).Google Scholar
7 Sheng, Z. Z. and Hermann, A. M., Nature 332, 138 (1988).Google Scholar
8 Ishida, T. and Sakuma, T., Jpn. J. Appl. Phys. 27, L1237 (1988).CrossRefGoogle Scholar
9 Schawlow, A. L. and Devlin, G. E., Phys. Rev. 113, 120 (1959).CrossRefGoogle Scholar
10 McCarron, E. M., III, Subramanian, M.A., Calabrese, J. C., and Harlow, R.L., Mater. Res. Bull. 123, 1355 (1988).CrossRefGoogle Scholar
11 Cava, R. J., Batlogg, B., Sunshine, S. A., Siegrist, T., Fleming, R. M., Rabe, K., Schneemeyer, L.F., Murphy, D.W., van Dover, R. B., Gallagher, P. K., Glanum, S. H., Nakahara, S., Farrow, R. C., Krajewski, J. J., Zahwrak, S.M., Waszczak, J.V., Marshall, J. H., Marsh, P., Rupp, L.W., Jr. Peck, W. F., and Rietman, E.A., Physica C153–155, 560 (1988).Google Scholar
12 Mizuno, M., Endo, H., Tsuchiya, J., Kijima, N., Sumiyama, A., and Oguri, Y., Jpn. J. Appl. Phys. 27, L1225 (1988).Google Scholar
13 Togano, K., Kumakura, H., Maeda, H., Yanagisawa, E., and Takahashi, K., Appl. Phys. Lett. 53, 1329 (1988).Google Scholar
14 Yamada, Y. and Murase, S., Jpn. J. Appl. Phys. 27, L996 (1988).Google Scholar