Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-05T02:08:55.452Z Has data issue: false hasContentIssue false

Chemistry, microstructure, and electrical properties at interfaces between thin films of platinum and alpha (6H) silicon carbide (0001)

Published online by Cambridge University Press:  03 March 2011

L.M. Porter
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907
R.F. Davis
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907
J.S. Bow
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, Arizona 85287-1704
M.J. Kim
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, Arizona 85287-1704
R.W. Carpenter
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, Arizona 85287-1704
Get access

Abstract

Thin films (4-1000 Å) of Pt were deposited via UHV electron beam evaporation at room temperature on monocrystalline, n-type α (6H)-SiC(0001) substrates and examined in terms of chemistry, microstructure, and electrical properties. The as-deposited contacts were polycrystalline and showed excellent rectifying behavior with low ideality factors (n < 1.1) and leakage currents of 5 × 10−8 A/cm2 at −10 V. The Schottky barrier height increased from 1.06 eV before annealing to 1.26 eV after successive 20 min anneals at 450, 550, 650, and 750 °C. In addition, the leakage currents decreased to 2 × 10−8 A/cm2 at −10 V. Interfacial reactions were not observed at annealing temperatures below 750 °C; above this temperature, Pt2Si and C precipitates were identified in the reaction zone.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Chou, T.C., J. Mater. Res. 5, 601 (1990).CrossRefGoogle Scholar
2Chou, T. C., Joshi, A., and Wadsworth, J., J. Mater. Res. 6, 796 (1991).CrossRefGoogle Scholar
3Bermudez, V.M. and Kaplan, R., J. Mater. Res. 5, 2882 (1990).CrossRefGoogle Scholar
4Papanicolaou, N. A., Christou, A., and Gipe, M. L., J. Appl. Phys. 65, 3526 (1989).CrossRefGoogle Scholar
5Bhatnagar, M., McLarty, P.K., and Baliga, B. J., IEEE Elec. Dev. Lett. 13, 501 (1992).CrossRefGoogle Scholar
6Porter, L. M., Ph.D. Dissertation, North Carolina State University (1993).Google Scholar
7Porter, L.M., Davis, R. F., Bow, J. S., Kim, M.J., and Carpenter, R. W., J. Mater. Res. 10, 26 (1995).CrossRefGoogle Scholar
8Porter, L. M., Bow, J. S., Glass, R. C., Kim, M. J., Carpenter, R. W., and Davis, R.F., J. Mater. Res. 10, 668 (1995).CrossRefGoogle Scholar
9Saxton, W. O., Pitt, T. J., and Homer, M., Ultramicroscopy 4, 343 (1979).CrossRefGoogle Scholar
10Ohdomari, I. and Tu, K.N., J. Appl. Phys. 51, 3735 (1980).CrossRefGoogle Scholar
11Freeouf, J.L., Jackson, T.N., Laux, S.E., and Woodall, J.M., J. Vac. Sci. Technol. 21, 570 (1982).CrossRefGoogle Scholar
12Woodall, J.M. and Freeouf, J.L., J. Vac. Sci. Technol. 21, 574 (1982).CrossRefGoogle Scholar
13Tung, R.T., Appl. Phys. Lett. 58, 2821 (1991).CrossRefGoogle Scholar
14Werner, J.H. and Guttler, H.H., J. Appl. Phys. 69, 1522 (1991).CrossRefGoogle Scholar
15Tung, R.T., Phys. Rev. B 45, 13 509 (1992).CrossRefGoogle Scholar
16Binary Alloy Phase Diagrams, 2nd ed., edited by Massalski, T. B., Okamoto, H., Subramanian, P. R., and Kacprzak, L. (ASM INTERNATIONAL, Materials Park, OH, 1990), Vol. 1.Google Scholar
17Anderson, A.B. and Ravimohan, C., Phys. Rev. B 38, 974 (1988).CrossRefGoogle Scholar
18Grunthaner, P. J., Grunthaner, F. J., and Madhukar, A., J. Vac. Sci. Technol. 20, 680 (1982).CrossRefGoogle Scholar
19Smith, K.L. and Black, K.M., J. Vac. Sci. Technol. A 2, 744 (1984).CrossRefGoogle Scholar