Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-06T05:20:01.207Z Has data issue: false hasContentIssue false

Chill-zone aluminum alloys with GPa strength and good plasticity

Published online by Cambridge University Press:  31 January 2011

Yan Li
Affiliation:
Department of Materials Science and Engineering, Beihang University, Beijing 100083, China; and Euronano, SIMaP-LTPCM, Institut Polytechnique de Grenoble INPG, Saint-Martin-d’Heres Campus, Grenoble 38402, France
Konstantinos Georgarakis
Affiliation:
Euronano, SIMaP-LTPCM, Institut Polytechnique de Grenoble INPG, Saint-Martin-d’Heres Campus, Grenoble 38402, France
Shujie Pang
Affiliation:
Department of Materials Science and Engineering, Beihang University, Beijing 100083, China
Frédéric Charlot
Affiliation:
Department of Materials Science and Engineering, Beihang University, Beijing 100083, China; and Euronano, SIMaP-LTPCM, Institut Polytechnique de Grenoble INPG, Saint-Martin-d’Heres Campus, Grenoble 38402, France
Alain LeMoulec
Affiliation:
Department of Materials Science and Engineering, Beihang University, Beijing 100083, China; and Euronano, SIMaP-LTPCM, Institut Polytechnique de Grenoble INPG, Saint-Martin-d’Heres Campus, Grenoble 38402, France
Sandrine Brice-Profeta
Affiliation:
Euronano, SIMaP-LTPCM, Institut Polytechnique de Grenoble INPG, Saint-Martin-d’Heres Campus, Grenoble 38402, France
Tao Zhang
Affiliation:
Department of Materials Science and Engineering, Beihang University, Beijing 100083, China
Alain Reza Yavari*
Affiliation:
Euronano, SIMaP-LTPCM, Institut Polytechnique de Grenoble INPG, Saint-Martin-d’Heres Campus, Grenoble 38402, France
*
a) Address all correspondence to this author. e-mail: yavari@ltpcm.inpg.fr
Get access

Abstract

Using a cold graphite mold casting method, bulk AlNiY chill-zone alloys were prepared at hypereutectic compositions with Al content from 85 at.% to 94 at.%. It was found that ultra-hard surface layers with a thickness of about 200 μm and submicron grain size form when the melt can be undercooled without heterogeneous nucleation at the mold contact surface. This hard chill-zone forming in contact with the mold possesses Vickers microhardness Hv about 350–420 and is thus harder than fully amorphous Al alloys. In compression, ultimate strength more than 1.1 GPa and true strain more than 150% without failure were achieved simultaneously. The combination of high strength and good plasticity will be discussed in relation to the special structure of the chill-zone alloy.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Davis, J.R.: Concise Metals Engineering Data Book (ASM International, Materials Park, OH, 1997), p. 112.Google Scholar
2Greer, A.L. and Ma, E.: Bulk metallic glasses: At the cutting edge of metals research. MRS Bull. 32, 611 (2007).CrossRefGoogle Scholar
3Yavari, A.R., Lewandowski, J.J., and Eckert, J.: Mechanical properties of bulk metallic glasses. MRS Bull. 32, 635 (2007).CrossRefGoogle Scholar
4Tsai, A.P., Inoue, A., and Masumoto, T.: Formation of metal-metal type aluminum-based amorphous alloys. Metall. Trans. A 19, 1369 (1988).CrossRefGoogle Scholar
5Inoue, A., Ohtera, K., Zhang, T., and Masumoto, T.: New amorphous Al-Ln (Ln=Pr, Nd, Sm or Gd) alloys prepared by melt spinning. Jpn. J. Appl. Phys. 27, L1583 (1988).CrossRefGoogle Scholar
6Paik, J.H., Botta, W.J., and Yavari, A.R.: Al-Based nanostructure obtained from amorphous precursors. Mater. Sci. Forum 225-227, 305 (1996).CrossRefGoogle Scholar
7He, Y., Poon, S.J., and Shiflet, G.J.: Synthesis and properties of metallic glasses that contain aluminum. Science 241, 1640 (1988).CrossRefGoogle ScholarPubMed
8Louzguine, D.V., Yavari, A.R., and Inoue, A.: Mischmetal as an alloying addition to amorphous materials and glass formers. J. Non-Cryst. Solids 316, 255 (2003).CrossRefGoogle Scholar
9Wilson, T.W., Choo, H., Porter, W.D., Speakman, S.A., Fan, C., and Liaw, P.K.: Amorphization and crystallization processes of the ball-milled Al-Y-Fe-TM alloys (TM = Ni, Co, Cu, and Fe). J. Non-Cryst. Solids 352, 4024 (2006).CrossRefGoogle Scholar
10Senkov, O.N., Senkova, S.V., Scott, J.M., and Miralce, D.B.: Compaction of amorphous aluminum alloy powder by direct extrusion and equal channel angular extrusion. Mater. Sci. Eng., A 393, 12 (2005).CrossRefGoogle Scholar
11Yavari, A.R., Botta, W.J., Rodrigues, C.A.D., Cardoso, C., and Valiev, R. Z.: Nanostructured bulk Al90Fe5Nd5 prepared by cold consolidation of gas atomised powder using severe plastic deformation. Scr. Mater. 46, 711 (2002).CrossRefGoogle Scholar
12Sanders, W.S., Warner, J.S., and Miralce, D.B.: Stability of Al-rich glasses in the Al-La-Ni system. Intermetallics 14, 348 (2006).CrossRefGoogle Scholar
13Rontó, V., Battezzati, L., Yavari, A.R., Tonegaru, M., Lupu, N., and Heunen, G.: Crystallization behavior of Al87Ni7La6 and Al87Ni7Sm6 amorphous alloys. Scr. Mater. 50, 839 (2004).CrossRefGoogle Scholar
14Kovács, Zs., Henits, P., Zhilyaev, A.P., and Révész, Á.: Deformation induced primary crystallization in a thermally non-primary crystallizing amorphous Al85Ce8Ni5Co2 alloy. Scr. Mater. 54, 1733 (2006).CrossRefGoogle Scholar
15Wang, L., Ma, L., Kimura, H., and Inoue, A.: Amorphous forming ability and mechanical properties of rapidly solidified Al-Zr- LTM (LTM=Fe, Co, Ni and Cu) alloys. Mater. Lett. 52, 47 (2002).CrossRefGoogle Scholar
16Kim, H.S.: Hardening behavior of partially crystallised amorphous Al alloys. Mater. Sci. Eng., A 304-306, 327 (2001).CrossRefGoogle Scholar
17Chen, H., He, Y., Shiflet, G.J., and Poon, S.J.: Mechanical properties of partially crystallized aluminum based metallic glasses. Scr. Metall. Mater. 25, 1421 (1991).CrossRefGoogle Scholar
18Inoue, A.: Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems. Prog. Mater. Sci. 43, 365 (1998).CrossRefGoogle Scholar
19Campbell, J.: Castings, 2nd ed. (Butterworth-Heinernamm, London, 2003), pp. 131, 139.Google Scholar
20Yavari, A.R., Ota, K., Georgarakis, K., Le, A. Moulec, Charlot, F., Vaughan, G., Greer, A.L., and Inoue, A.: Chill zone copper with the strength of stainless steel and tailorable color. Acta Mater. 56, 1830 (2008).CrossRefGoogle Scholar
21Inoue, A. and Zhang, W.: Formation, thermal stability and mechanical properties of Cu-Zr and Cu-Hf binary glassy alloy rods. Mater. Trans., JIM 45, 584 (2004).CrossRefGoogle Scholar
22Turnbull, D.: Under what conditions can a glass be formed? Contemp. Phys. 10, 473 (1969).CrossRefGoogle Scholar
23Yavari, A.R. and Drbohlav, O.: Thermodynamics and kinetics of nanostructure formation in soft-magnetic nanocrystalline alloys. Mater. Trans., JIM 7, 896 (1995).CrossRefGoogle Scholar
24ASM Alloys Phase Diagram Center: http://www.asminternational.org/asmenterprise/apd/.Google Scholar
25Wang, D., Tan, H., and Li, Y.: Multiple maxima of GFA in three adjacent eutectics in Zr-Cu-Al alloy system—A metallographic way to pinpoint the best glass forming alloys. Acta Mater. 53, 2969 (2005).CrossRefGoogle Scholar
26Gladyshevskii, R.E., Cenzual, K., and Parthe, E.: The crystal structure of orthorhombic Gd3Ni5Al19, a new representative of the structure series R2+mT4+mAl15+4m. J. Solid State Chem. 100, 9 (1992).CrossRefGoogle Scholar
27Vasiliev, A.L., Aindow, M., Blackburn, M.J., and Watson, T.J.: Phase stability and microstructure in devitrified Al-rich Al-Y-Ni alloys. Intermetallics 12, 349 (2004).CrossRefGoogle Scholar
28Mika, T., Karolus, M., Haneczok, G., Bednarska, L., Lagiewka, E., and Kotur, B.: Influence of Gd and Fe on crystallization of Al87Y5Ni8 amorphous alloy. J. Non-Cryst. Solids 345, 3099 (2008).CrossRefGoogle Scholar
29Keryvin, V.: Indentation of bulk metallic glasses: Relationships between shear bands observed around the prints and hardness. Acta Mater. 55, 2565 (2007).CrossRefGoogle Scholar
30Xu, Y.K., Ma, H., Xu, J., and Ma, E.: Mg-based bulk metallic glass composites with plasticity and gigapascal strength. Acta Mater. 53, 1857 (2005).CrossRefGoogle Scholar
31Peker, A. and Johnson, W.L.: A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett. 63, 2342 (1993).CrossRefGoogle Scholar
32Luo, H., Shaw, L., Zhang, L.C., and Miracle, D.: On tension/ compression asymmetry of an extruded nanocrystalline Al-FeCr-Ti alloy. Mater. Sci. Eng., A 409, 249 (2005).CrossRefGoogle Scholar
33Bringas, J.E. and Wayman, M.: The Metals Red Book (CASTI Publishing Inc., 2003).Google Scholar
34Wei, Q., Jiao, T., Mathaudhu, S.N., Ma, E., Hartwig, K.T., and Ramesh, K. T.: Microstructure and mechanical properties of tantalum after equal channel angular extrusion (ECAE). Mater. Sci. Eng., A 358, 266 (2003).CrossRefGoogle Scholar
35Lu, J., Ravichandran, G., and Johnson, W.L.: Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures. Acta Mater. 51, 3429 (2003).CrossRefGoogle Scholar
36Li, H., Subhash, G., Gao, X-L., Kecskes, L.J., and Dowding, R.J.: Negative strain rate sensitivity and compositional dependence of fracture strength in Zr/Hf based bulk metallic glasses. Scr. Mater. 49, 1087 (2003).CrossRefGoogle Scholar
37Valiev, R.: Materials science nanomaterial advantage. Nature 419, 887 (2002).CrossRefGoogle ScholarPubMed
38Hofmann, D.C., Suh, J.Y., Wiest, A., Duan, G., Lind, M.L., Dementriou, M.D., and Johnson, W.L.: Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 451, 1085 (2008).CrossRefGoogle ScholarPubMed