Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-14T19:18:38.706Z Has data issue: false hasContentIssue false

A combinatorial approach for efficient mapping of phase diagrams and properties

Published online by Cambridge University Press:  31 January 2011

Ji-Cheng Zhao
Affiliation:
General Electric Company, Corporate Research and Development, P.O. Box 8, K1-MB231, Schenectady, New York 12301
Get access

Abstract

A methodology is developed which extends the combinatorial approaches to structural materials research and development. This high-efficiency methodology employs diffusion couples and “diffusion multiples” to create large variations (libraries) of compositions in bulk samples for fast and systematic surveys of bulk properties. These composition libraries coupled with microanalytical techniques such as electron probe microanalysis, electron backscatter diffraction analysis, and nanoindentation tests can be used for efficient surveys of phases, equilibria, diffusion coefficients, precipitation kinetics, properties, and composition–phase–property relations (such as solution hardening and strengthening effect) for accelerated design of multicomponent alloys.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Xiang, X-D., Sun, X., Briceno, G., Lou, Y., Wang, K.A., Chang, H., Wallace-Freedman, W.G., Chen, S.W., and Schultz, P.G., Science 268, 1738 (1995).CrossRefGoogle Scholar
2.Briceno, G., Chang, H., Sun, X., Schultz, P.G., and Xiang, X-D., Science 270, 273 (1995).CrossRefGoogle Scholar
3.Danielson, E., Devenney, M., Giaquinta, D.M., Golden, J.H., Haushalter, R.C., McFarland, E.W., Poojary, D.M., Reaves, C.M., Weinberg, W.H., and Wu, X.D., Science 279, 837 (1997).CrossRefGoogle Scholar
4.van Dover, R.B., Schneemeyer, L.F., and Fleming, R.M., Nature (London) 392, 162 (1998).CrossRefGoogle Scholar
5.Hanak, J.J., J. Mater. Sci. 5, 564 (1970).CrossRefGoogle Scholar
6.Xiang, X-D., Annu. Rev. Mater. Sci. 29, 149 (1999).CrossRefGoogle Scholar
7.Zhao, J-C., Adv. Eng. Mater. 3, 143 (2001).3.0.CO;2-F>CrossRefGoogle Scholar
8.Hasebe, M. and Nishizawa, T., in Applications of Phase Diagrams in Metallurgy and Ceramics, edited by Carter, G.C. (NBS Special Publ. No. 496, Gaithersburg, MD, 1978), Vol. 2, p. 911.Google Scholar
9.Jin, Z., Scand. J. Metall. 10, 279 (1981).Google Scholar
10.Zhao, J-C. and Jin, Z., Z. Metallkde. 81, 247 (1990).Google Scholar
11.Jin, Z. and Qiu, C., Metall. Mater. Trans. 24A, 2137 (1993).CrossRefGoogle Scholar
12.Goldstein, J.I., Scanning Electron Microscopy and X-Ray Microanalysis (Plenum Press, New York, 1992).CrossRefGoogle Scholar
13.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
14.Doerner, M.F. and Nix, W.D., J. Mater. Res. 1, 601 (1986).CrossRefGoogle Scholar
15.Pethica, J.B., Hutchings, R., and Oliver, W.C., Philos. Mag. 48A, 593 (1983).CrossRefGoogle Scholar
16.Pharr, G.M., Oliver, W.C., and Brotzen, F.R., J. Mater. Res. 7, 613 (1992).CrossRefGoogle Scholar
17.Zhao, J-C., Jin, Z., and Huang, P., Scr. Metall. 22, 1825 (1988).CrossRefGoogle Scholar
18.Harland, C.J., Akhter, P., and Bewick, A., J. Phys. E 14, 175 (1981).CrossRefGoogle Scholar
19.Electron Backscatter Diffraction in Materials Science, edited by Schwartz, A.J., Kumar, M., and Adams, B.L. (Kluwer Academic/ Plenum Publishers, New York, 2000).CrossRefGoogle Scholar
20.Kim, J., Zhao, J-C., and Dayananda, M.A. (unpublished).Google Scholar
21.Janssen, M.M.P., Metall. Trans. 4, 1623 (1973).CrossRefGoogle Scholar
22.Shanker, S. and Siegle, L.L., Metall. Trans. 9A, 1467 (1978).CrossRefGoogle Scholar
23.Yamamoto, T., Takashima, T., and Nishida, K., J. Jpn. Inst. Met. 44, 294 (1980).CrossRefGoogle Scholar
24.Romig, A.D., Bull. Alloy Phase Diagr. 8, 308 (1987).CrossRefGoogle Scholar
25.van Loo, F.J.J., Prog. Solid State Chem. 20, 47 (1990).CrossRefGoogle Scholar
26.Huang, W. and Chang, Y.A., Intermetallics 6, 487 (1998).CrossRefGoogle Scholar
27.Ootoshi, Y., Fujiwara, F., Horita, Z., and Nemoto, M., Mater. Trans. JIM 39, 225 (1998).CrossRefGoogle Scholar
28.Buch, A., Z. Metallkde. 90, 744 (1999).Google Scholar
29.Metals Handbooks, 9th ed. (ASM International, Materials Park, OH, 1979), Vol. 2, p. 709.Google Scholar
30.Rosen, S. and Goebel, J.A., Trans. TMS-AIME 242, 722 (1968).Google Scholar
31.Noebe, R.D., Misra, A., and Gibala, R., Iron Steel Inst. Jpn. Int. 31, 1172 (1991).CrossRefGoogle Scholar
32.Nash, P. and Singleton, M.F., Bull. Alloy Phase Diagr. 10, 258 (1989).CrossRefGoogle Scholar
33.James, A.M. and Lord, M.P., Macmillan's Chemical and Physical Data (Macmillan, London, U.K., 1992).Google Scholar
34.Corti, C.W., Coupland, D.R., and Selman, G.L., Platinum Met. Rev. 24, 2 (1980).CrossRefGoogle Scholar
35.van Loo, F.J.J., Bastin, G.F., Vrolijk, J.W.Q.A., and Hendriks, J.J.M., J. Less-Common Met. 72, 225 (1980).CrossRefGoogle Scholar
36.Olson, G.B., Science 277, 1237 (1997).CrossRefGoogle Scholar
37.Saunders, N. and Miodownik, A.P., CALPHAD (Elsevier Science Inc., New York, 1998), Chapter 10.Google Scholar
38.Spencer, P.J., Eriksson, G., and von Richthofen, A., in Thermody-namic Modeling and Materials Data Engineering, edited by Caliste, J-P., Truyol, A., and Westbrook, J.H. (Springer, Berlin, Germany, 1998), p. 169.CrossRefGoogle Scholar
39.Cottrell, A., MRS Bull. 25(2), 43 (2000).Google Scholar
40.Pharr, G.M., Mater. Sci. Eng. A 253, 51 (1998).CrossRefGoogle Scholar
41.Venkatesh, T.A., van Vliet, K.J., Giannakopoulos, A.E., and Suresh, S., Scr. Mater. 42, 833 (2000).CrossRefGoogle Scholar
42.Giannakopoulos, A.E. and Suresh, S., Scr. Mater. 40, 1191 (1999).CrossRefGoogle Scholar
43.Lawn, B.R., Evans, A.G., and Marshall, D.B., J. Am. Ceram. Soc. 63, 574 (1980).CrossRefGoogle Scholar
44.Anstis, G.R., Chantikul, P., Lawn, B.R., and Marshall, D.B., J. Am. Ceram. Soc. 64, 533 (1981).CrossRefGoogle Scholar
45.Field, J.S. and Swain, M.V., J. Mater. Res. 8, 297 (1993).CrossRefGoogle Scholar
46.Field, J.S. and Swain, M.V., J. Mater. Res. 10, 101 (1995).CrossRefGoogle Scholar
47.Fischer-Cripps, A.C., J. Mater. Sci. 32, 727 (1995).CrossRefGoogle Scholar
48.Hay, J.L. (personal communication, Oct 2001).Google Scholar
49.Lucas, B.N. and Oliver, W.C., Metall. Mater. Trans. 30A, 601 (1999).CrossRefGoogle Scholar
50.Hay, J.L. and Pharr, G.M., in ASM Handbook (ASM International, Materials Park, OH, 2000), Vol. 8, p. 232.Google Scholar
51.Kennedy, K., Stefansky, T., Davy, G., Zackay, V.F., and Parker, E.R., J. Appl. Phys. 36, 3808 (1965).CrossRefGoogle Scholar
52.Cohen-Adad, M. Th., Gharbi, M., Goutaudier, C., and Cohen-Adad, R., J. Alloys Compd. 289, 185 (1999).CrossRefGoogle Scholar
53.Cohen-Adad, M. Th., Laversenne, L., Gharbi, M., Goutaudier, C., Boulon, G., and Cohen-Adad, R., J. Phase Equilib. (2001, in press).Google Scholar
54.Laversenne, L., Guyot, Y., Goutaudier, C., Cohen-Adad, M. Th., and Boulon, G., Opt. Mater. (2001, in press).Google Scholar
55.Tsui, T.Y. and Pharr, G.M., J. Mater. Res. 14, 292 (1999).CrossRefGoogle Scholar
56.Westbrook, J.H., Seybolt, A.U., and Peat, A.J., J. Electrochem. Soc. 111, 888 (1964).CrossRefGoogle Scholar