Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-13T06:29:14.527Z Has data issue: false hasContentIssue false

Combinatorial search of structural transitions: Systematic investigation of morphotropic phase boundaries in chemically substituted BiFeO3

Published online by Cambridge University Press:  28 September 2012

Daisuke Kan*
Affiliation:
Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742; and Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan
Christian J. Long
Affiliation:
Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742
Christian Steinmetz
Affiliation:
Department of Physics and Astronomy, Rowan University, Glassboro, New Jersey 08028
Samuel E. Lofland
Affiliation:
Department of Physics and Astronomy, Rowan University, Glassboro, New Jersey 08028
Ichiro Takeuchi
Affiliation:
Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742
*
a)Address all correspondence to this author. e-mail: dkan@scl.kyoto-u.ac.jp
Get access

Abstract

We review our work on combinatorial search and investigation of morphotropic phase boundaries (MPBs) in chemically substituted BiFeO3 (BFO). Utilizing the thin-film composition spread technique, we discovered that rare-earth (RE = Sm, Gd, and Dy) substitution into the A-site of the BFO lattice results in a structural phase transition from the rhombohedral to the orthorhombic phase. At the structural boundary, both the piezoelectric coefficient and the dielectric constant are substantially enhanced. It is also found that the observed MPB behavior can be universally described by the average A-site ionic radius as a critical parameter, indicating that chemical pressure effect due to substitution is the primary cause for the MPB behavior in RE-substituted BFO. Our combinatorial investigations were further extended to the A- and B-site cosubstituted BFO in the pseudoternary composition spread of (Bi1−xSmx)(Fe1−yScy)O3. Clustering analysis of structural and ferroelectric property data of the fabricated pseudoternary composition spread reveals close correlations between the structural and ferroelectric properties. We show that the evolution in structural and ferroelectric properties is controlled solely by the A-site Sm substitution and not the B-site Sc substitution.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Koinuma, H. and Takeuchi, I.: Combinatorial solid-state chemistry of inorganic materials. Nat. Mater. 3, 429438 (2004).CrossRefGoogle ScholarPubMed
Potyrailo, R., Rajan, K., Stoewe, K., Takeuchi, I., Chisholm, B., and Lam, H.: Combinatorial and high-throughput screening of materials libraries: Review of state of the art. ACS Comb. Sci. 13, 579633 (2011).CrossRefGoogle ScholarPubMed
Fukumura, T., Ohtani, M., Kawasaki, M., Okimoto, Y., Kageyama, T., Koida, T., Hasegawa, T., Tokura, Y., and Koinuma, H.: Rapid construction of a phase diagram of doped Mott insulators with a composition-spread approach. Appl. Phys. Lett. 77, 3426 (2000).CrossRefGoogle Scholar
Murakami, M., Chang, K-S., Aronova, M.A., Lin, C-L., Yu, M.H., Hattrick-Simpers, J., Wuttig, M., Takeuchi, I., Gao, C., Hu, B., Lofland, S.E., Knauss, L.A., and Bendersky, L.A.: Tunable multiferroic properties in nanocomposite PbTiO3–CoFe2O4 epitaxial thin films. Appl. Phys. Lett. 87, 112901 (2005).CrossRefGoogle Scholar
Hunter, D., Osborn, W., Wang, K., Kazantseva, N., Hattrick-Simpers, J., Suchoski, R., Takahashi, R., Young, M.L., Mehta, A., Bendersky, L.A., Lofland, S.E., Wuttig, M., and Takeuchi, I.: Giant magnetostriction in annealed Co1−xFex thin-films. Nat. Commun. 2, 518 (2011).CrossRefGoogle ScholarPubMed
Aimon, N.M., Kim, D.H., Choi, H.K., and Ross, C.A.: Deposition of epitaxial BiFeO3/CoFe2O4 nanocomposites on (001) SrTiO3 by combinatorial pulsed laser deposition. Appl. Phys. Lett. 100, 092901 (2012).CrossRefGoogle Scholar
Park, S-E. and Shrout, T.R.: Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82, 1804 (1997).CrossRefGoogle Scholar
Guo, R., Cross, L.E., Park, S-E., Noheda, B., Cox, D.E., and Shirane, G.: Origin of the high piezoelectric response in PbZr1-xTixO3. Phys. Rev. Lett. 84, 5423 (2000).CrossRefGoogle ScholarPubMed
Kutnjak, Z., Petzelt, J., and Blinc, R.: The giant electromechanical response in ferroelectric relaxors as a critical phenomenon. Nature 441, 956 (2006).CrossRefGoogle ScholarPubMed
Fu, H. and Cohen, R.E.: Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature 403, 281 (2000).CrossRefGoogle ScholarPubMed
Bellaiche, L., García, A., and Vanderbilt, D.: Electric-field induced polarization paths in Pb(Zr1-xTix)O3 alloys. Phys. Rev. B 64, 060103 (2001).CrossRefGoogle Scholar
Takeuchi, I., Famodu, O.O., Read, J.C., Aronova, M.A., Chang, K-S., Craciunescu, C., Lofland, S.E., Wuttig, M., Wellstood, F.C., Knauss, L., and Orozco, A.: Identification of novel compositions of ferromagnetic shape-memory alloys using composition spreads. Nat. Mater. 2, 180 (2003).CrossRefGoogle ScholarPubMed
Cui, J., Chu, Y.S., Famodu, O.O., Furuya, Y., Hattrick-Simpers, J., James, R.D., Ludwig, A., Thienhaus, S., Wuttig, M., Zhang, Z., and Takeuchi, I.: Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width. Nat. Mater. 5, 286 (2006).CrossRefGoogle ScholarPubMed
Wang, J., Neaton, J.B., Zheng, H., Nagarajan, V., Ogale, S.B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D.G., Waghmare, U.V., Spaldin, N.A., Rabe, K.M., Wuttig, M., and Ramesh, R.: Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719 (2003).CrossRefGoogle ScholarPubMed
Zhao, T., Scholl, A., Zavaliche, F., Lee, K., Barry, M., Doran, A., Cruz, M.P., Chu, Y.H., Ederer, C., Spaldin, N.A., Das, R.R., Kim, D.M., Baek, S.H., Eom, C.B., and Ramesh, R.: Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nat. Mater. 5, 823 (2006).CrossRefGoogle ScholarPubMed
Catalan, G. and Scott, J.F.: Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463 (2009).CrossRefGoogle Scholar
Cheng, Z., Wang, X., Dou, S., Kimura, H., and Ozawa, K.: Improved ferroelectric properties in multiferroic BiFeO3 thin films through La and Nb codoping. Phys. Rev. B 77, 092101 (2008).CrossRefGoogle Scholar
Yuan, G.L., Or, S.W., Liu, J.M., and Liu, Z.G.: Structural transformation and ferroelectromagnetic behavior in single-phase Bi1-xNdxFeO3 multiferroic ceramics. Appl. Phys. Lett. 89, 052905 (2006).CrossRefGoogle Scholar
Chu, Y.H., Zhan, Q., Yang, C-H., Cruz, M.P., Martin, L.W., Zhao, T., Yu, P., Ramesh, R., Joseph, P.T., Lin, I.N., Tian, W., and Schlom, D.G.: Low voltage performance of epitaxial BiFeO3 films on Si substrates through lanthanum substitution. Appl. Phys. Lett. 92, 102909 (2008).CrossRefGoogle Scholar
Khomchenko, V.A., Kiselev, D.A., Bdikin, I.K., Shvartsman, V.V., Borisov, P., Kleemann, W., Vieira, J.M., and Kholkin, A.L.: Crystal structure and multiferroic properties of Gd-substituted BiFeO3. Appl. Phys. Lett. 93, 262905 (2008).CrossRefGoogle Scholar
Zhu, W-M., Su, L.W., Ye, Z-G., and Ren, W.: Enhanced magnetization and polarization in chemically modified multiferroic (1-x)BiFeO3-xDyFeO3 solid solution. Appl. Phys. Lett. 94, 142908 (2009).CrossRefGoogle Scholar
Yang, C-H., Seidel, J., Kim, S.Y., Rossen, P.B., Yu, P., Gajek, M., Chu, Y.H., Martin, L.W., Holcomb, M.B., He, Q., Maksymovych, P., Balke, N., Kalinin, S.V., Baddorf, A.P., Basu, S.R., Scullin, M.L., and Ramesh, R.: Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. Nat. Mater. 8, 485 (2009).CrossRefGoogle ScholarPubMed
Karimi, S., Reaney, I.M., Han, Y., Pokorny, J., and Sterianou, I.: Crystal chemistry and domain structure of rare-earth doped BiFeO3 ceramics. J. Mater. Sci. 44, 5102 (2009).CrossRefGoogle Scholar
Kalantari, K., Sterianou, I., Karimi, S., Ferrarelli, M.C., Miao, S., Sinclair, D.C., and Reaney, I.M.: Ti-doping to reduce conductivity in Bi0.85Nd0.15FeO3 ceramics. Adv. Funct. Mater. 21, 3737 (2011).CrossRefGoogle Scholar
Ishiwara, H.: Impurity substitution effects in BiFeO3 thin films-from a viewpoint of FeRAM applications. Curr. Appl. Phys. 12, 603 (2012).CrossRefGoogle Scholar
Troyanchuk, I.O., Karpinsky, D.V., Bushinsky, M.V., Mantytskaya, O.S., Tereshko, N.V., and Shut, V.N.: Phase transitions, magnetic and piezoelectric properties of rare-earth-substituted BiFeO3 ceramics. J. Am. Ceram. Soc. 94, 4502 (2011).CrossRefGoogle Scholar
Levin, I., Tucker, M.G., Wu, H., Provenzano, V., Dennis, C.L., Karimi, S., Comyn, T., Stevenson, T., Smith, R.I., and Reaney, I.M.: Displacive phase transitions and magnetic structures in Nd-substituted BiFeO3. Chem. Mater. 23, 2166 (2011).CrossRefGoogle Scholar
Fujino, S., Murakami, M., Anbusathaiah, V., Lim, S-H., Nagarajan, V., Fennie, C.J., Wuttig, M., Salamanca-Riba, L., and Takeuchi, I.: Combinatorial discovery of a lead-free morphotropic phase boundary in a thin-film piezoelectric perovskite. Appl. Phys. Lett. 92, 202904 (2008).CrossRefGoogle Scholar
Kan, D., Pálová, L., Anbusathaiah, V., Cheng, C-J., Fujino, S., Nagarajan, V., Rabe, K.M., and Takeuchi, I.: Universal behavior and electric-field-induced structural transition in rare-earth-substituted BiFeO3. Adv. Funct. Mater. 20, 1108 (2010).CrossRefGoogle Scholar
Kan, D., Suchoski, R., Fujino, S., and Takeuchi, I.: Combinatorial investigation of structural and ferroelectric properties of A- and B-site co-doped BiFeO3 thin films. Integr. Ferroelectr. 111, 116 (2009).CrossRefGoogle Scholar
Cheng, C-J., Kan, D., Lim, S-H., McKenzie, W.R., Munroe, P.R., Salamanca-Riba, L.G., Withers, R.L., Takeuchi, I., and Nagarajan, V.: Structural transitions and complex domain structures across a ferroelectric-to-antiferroelectric phase boundary in epitaxial Sm-doped BiFeO3 thin films. Phys. Rev. B 80, 014109 (2009).CrossRefGoogle Scholar
Kan, D., Cheng, C-J., Nagarajan, V., and Takeuchi, I.: Composition and temperature-induced structural evolution in La, Sm, and Dy substituted BiFeO3 epitaxial thin films at morphotropic phase boundaries. J. Appl. Phys. 110, 014106 (2011).CrossRefGoogle Scholar
Cheng, C-J., Kan, D., Anbusathaiah, V., Takeuchi, I., and Nagarajan, V.: Microstructure-electromechanical property correlations in rare-earth-substituted BiFeO3 epitaxial thin films at morphotropic phase boundaries. Appl. Phys. Lett. 97, 212905 (2010).CrossRefGoogle Scholar
Nagarajan, V., Stanishevsky, A., Chen, L., Zhao, T., Liu, B-T., Melngailis, J., Roytburd, A.L., Ramesh, R., Finder, J., Yu, Z., Droopad, R., and Eisenbeiser, K.: Realizing intrinsic piezoresponse in epitaxial submicron lead zirconate titanate capacitors on Si. Appl. Phys. Lett. 81, 4215 (2002).CrossRefGoogle Scholar
Kan, D. and Takeuchi, I.: Effect of substrate orientation on lattice relaxation of epitaxial BiFeO3 thin films. J. Appl. Phys. 108, 014104 (2010).CrossRefGoogle Scholar
Saito, Y., Takao, H., Tani, T., Nonoyama, T., Takatori, K., Homma, T., Nagaya, T., and Nakamura, M.: Lead-free piezoceramics. Nature 432, 84 (2004).CrossRefGoogle ScholarPubMed
Jia, Y.Q.: Crystal radii and effective ionic radii of the rare earth ions. J. Solid State Chem. 95, 184 (1991).CrossRefGoogle Scholar
Cheng, C-J., Borisevich, A.Y., Kan, D., Takeuchi, I., and Nagarajan, V.: Nanoscale structural and chemical properties of antipolar clusters in Sm-doped BiFeO3 ferroelectric epitaxial thin films. Chem. Mater. 22, 2588 (2010).CrossRefGoogle Scholar
Sawaguchi, E., Maniwa, H., and Hoshino, S.: Antiferroelectric structure of lead zirconate. Phys. Rev. 83, 1078 (1951).CrossRefGoogle Scholar
Woodward, D.I., Knudsen, J., and Reaney, I.M.: Review of crystal and domain structures in the PbZrxTi1-xO3 solid solution. Phys. Rev. B 72, 104110 (2005).CrossRefGoogle Scholar
Karimi, S., Reaney, I.M., Levin, I., and Sterianou, I.: Nd-doped BiFeO3 ceramics with antipolar order. Appl. Phys. Lett. 94, 112903 (2009).CrossRefGoogle Scholar
Shannon, R.D.: Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73, 348 (1993).CrossRefGoogle Scholar
Ravindran, P., Vidya, R., Kjekshus, A., Fjellvåg, H., and Eriksson, O.: Theoretical investigation of magnetoelectric behavior in BiFeO3. Phys. Rev. B 74, 224412 (2006).CrossRefGoogle Scholar
Haumont, R., Bouvier, P., Pashkin, A., Rabia, K., Frank, S., Dkhil, B., Crichton, W.A., Kuntscher, C.A., and Kreisel, J.: Effect of high pressure on multiferroic BiFeO3. Phys. Rev. B 79, 184110 (2009).CrossRefGoogle Scholar
Guennou, M., Bouvier, P., Chen, G.S., Dkhil, B., Haumont, R., Garbarino, G., and Kreisel, J.: Multiple high-pressure phase transitions in BiFeO3. Phys. Rev. B 84, 174107 (2011).CrossRefGoogle Scholar
Emery, S.B., Cheng, C-J., Kan, D., Rueckert, F.J., Alpay, S.P., Nagarajan, V., Takeuchi, I., and Wells, B.O.: Phase coexistence near a morphotropic phase boundary in Sm-doped BiFeO3 films. Appl. Phys. Lett. 97, 152902 (2010).CrossRefGoogle Scholar
Baettig, P., Schelle, C.F., LeSar, R., Waghmare, U.V., and Spaldin, N.A.: Theoretical prediction of new high-performance lead-free piezoelectrics. Chem. Mater. 17, 1376 (2005).CrossRefGoogle Scholar
Yasui, S., Uchida, H., Nakaki, H., Nishida, K., Funakubo, H., and Koda, S.: Analysis for crystal structure of Bi(Fe, Sc)O3 thin films and their electrical properties. Appl. Phys. Lett. 91, 022906 (2007).CrossRefGoogle Scholar
Marezio, M., Remeika, J.P., and Dernier, P.D.: The crystal chemistry of the rare earth orthoferrites. Acta Crystallogr., Sect. B 26, 2008 (1970).CrossRefGoogle Scholar
Maslen, E.N., Streltsov, V.A., and Ishizawa, N.: A synchrotron x-ray study of the electron density in SmFeO3. Acta Crystallogr., Sect. B 52, 406 (1996).CrossRefGoogle Scholar
Belik, A.A., Iikubo, S., Kodama, K., Igawa, N., Shamoto, S., Maie, M., Nagai, T., Matsui, Y., Stefanovich, S.Y., Lazoryak, B.I., and Takayama-Muromachi, E.: BiScO3: Centrosymmetric BiMnO3-type oxide. J. Am. Chem. Soc. 128, 706 (2006).CrossRefGoogle ScholarPubMed
Singh, M.K., Jang, H.M., Ryu, S., and Jo, M-H.: Polarized Raman scattering of multiferroic BiFeO3 epitaxial films with rhombohedral R3c symmetry. Appl. Phys. Lett. 88, 042907 (2006).CrossRefGoogle Scholar
Singh, M.K., Ryu, S., and Jang, H.M.: Polarized Raman scattering of multiferroic BiFeO3 thin films with pseudo-tetragonal symmetry. Phys. Rev. B 72, 132101 (2005).CrossRefGoogle Scholar
Venugopalan, S., Dutta, M., Ramdas, A.K., and Remeika, J.P.: Magnetic and vibrational excitations in rare-earth orthoferrites: A Raman scattering study. Phys. Rev. B 31, 1490 (1985).CrossRefGoogle ScholarPubMed
Johnson, S.: Hierarchical clustering schemes. Psychometrika 32, 241 (1967).CrossRefGoogle ScholarPubMed
Long, C.J., Hattrick-Simpers, J., Murakami, M., Srivastava, R.C., Takeuchi, I., Karen, V.L., and Li, X.: Rapid structural mapping of ternary metallic alloy systems using the combinatorial approach and cluster analysis. Rev. Sci. Instrum. 78, 072217 (2007).CrossRefGoogle ScholarPubMed
Barr, G., Dong, W., and Gilmore, C.J.: High-throughput powder diffraction. II. Applications of clustering methods and multivariate data analysis. J. Appl. Crystallogr. 37, 243 (2004).CrossRefGoogle Scholar
Barr, G., Cunningham, G., Dong, W., Gilmore, C.J., and Kojima, T.: High-throughput powder diffraction V: The use of Raman spectroscopy with and without x-ray powder diffraction data. J. Appl. Crystallogr. 42, 706 (2009).CrossRefGoogle Scholar
Scheidtmann, J., Frantzen, A., Frenzer, G., and Maier, W.F.: A combinatorial technique for the search of solid state gas sensor materials. Meas. Sci. Technol. 16, 119 (2005).CrossRefGoogle Scholar