Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-30T21:00:44.169Z Has data issue: false hasContentIssue false

Combustion co-synthesis of Si3N4-based in situ composites

Published online by Cambridge University Press:  31 January 2011

J. T. Li
Affiliation:
Laboratory of Special Ceramics & P/M, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
W. S. Liu
Affiliation:
Laboratory of Special Ceramics & P/M, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
Y. L. Xia
Affiliation:
Laboratory of Special Ceramics & P/M, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
C. C. Ge
Affiliation:
Laboratory of Special Ceramics & P/M, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
Get access

Abstract

The feasibility of synthesizing silicon nitride-silicon carbide-titanium carbonitride composites by combustion reactions is demonstrated. With titanium carbonitride taken to be an ideal solid solution, its composition is determined as TiC0.36N0.64. Thermodynamic analysis supports the experimental results.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gogotsi, Yu.G., J. Mater. Sci. 29, 25412556 (1994).CrossRefGoogle Scholar
2.Shih, C.J. and Yang, J.M., Scripta Metall. Mater. 24, 24192424 (1990).CrossRefGoogle Scholar
3.Huang, J.L., Chiu, H.L., and Lee, M.T., J. Am. Ceram. Soc. 77 (3), 705710 (1994).CrossRefGoogle Scholar
4.Yasutomi, Y., Sobue, M., Shinozaki, S., and Hangas, J., Ceram, J.. Soc. Jpn. 99, 676682 (1991).Google Scholar
5.Peni, F., Crampon, J., and Duclos, R., J. Europ. Ceram. Soc. 8, 311318 (1991).CrossRefGoogle Scholar
6.Herrmann, M., Balzer, B., Schubert, Chr., and Hermel, W., J. Europ. Ceram. Soc. 12, 287296 (1993).CrossRefGoogle Scholar
7.Hirao, K., Miyamoto, Y., and Koizumi, M., Adv. Ceram. Mater. 21, 289295 (1987).Google Scholar
8.Ge, C.C., Li, J.T., and Xia, Y.L., Int. J. SHS (accepted).Google Scholar
9.Pastor, H., Mater. Sci. Eng. A105/106, 401409 (1988).CrossRefGoogle Scholar
10.Yeh, C.H. and Hon, M.H., J. Am. Ceram. Soc. 78 (9), 23952400 (1990).CrossRefGoogle Scholar
11.Kamiya, A. and Nakano, K., J. Mater. Sci. Lett. 12, 430432 (1993).CrossRefGoogle Scholar
12.Knacke, O., Kubaschewski, O., and Hellelmann, K., Thermochemical Properties for Inorganic Materials, 2nd ed. (Springer-Verlag, Berlin, Heidelberg, 1991).Google Scholar
13.Yamada, O., Hirao, K., Koizumi, M., and Miyamoto, Y., J. Am. Ceram. Soc. 72 (9), 17351738 (1989).CrossRefGoogle Scholar
14.Zeng, J., Miyamoto, Y., and Yamada, O., J. Am. Ceram. Soc. 74 (9), 21972200 (1991).CrossRefGoogle Scholar
15.Agrafiotis, C.C., Lis, J., Puszynski, J.A., and Hlavacek, V., J. Am. Ceram. Soc. 73, 35143517 (1991).CrossRefGoogle Scholar