Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-05T04:31:02.987Z Has data issue: false hasContentIssue false

Combustion synthesis method for synthesis of aluminum nitride powder using aluminum containers

Published online by Cambridge University Press:  31 January 2011

Chun-Nan Lin
Affiliation:
Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan, 70101, Republic of China
Shyan-Lung Chung*
Affiliation:
Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan, 70101, Republic of China
*
a)Address all correspondence to this author. e-mail: slchung@mail.ncku.edu.tw
Get access

Abstract

A combustion synthesis method was developed for synthesis of AlN powder. Al powder and small amounts of NH4Cl were thoroughly mixed and placed in low-melting-point containers made of a thin, perforated aluminum sheet. The combustion reaction was ignited by heating the top surface of the powder stack, and the aluminum container was converted completely to AlN during the combustion reaction. High product yields were obtained under N2 pressures of 0.2–0.5 MPa. The product was composed of a dense outer portion and a loose inner portion. Effects of several process parameters on the product yield were investigated and discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Slack, G.A., Tanzilli, R.A., Pohl, R.O., and Vandersande, J.W., J. Phys. Chem. Solids 48, 641 (1987).Google Scholar
2.Mroz, T.J., Jr., Ceram. Bull. 71, 782 (1992).Google Scholar
3.Sheppard, L.M., Ceram. Bull. 69, 1801 (1990).Google Scholar
4.Mussler, B.H., Ceram. Bull. 79, 45 (2000).Google Scholar
5.Haussonne, F.J-M., Mater. Manuf. Processes 10, 717 (1995).Google Scholar
6.Selvaduray, G. and Sheet, L., Mater. Sci. Technol. 9, 463 (1993).CrossRefGoogle Scholar
7.Serpek, O., United Kingdom Patent No. 13579 (1906).Google Scholar
8.Kuramoto, N. and Taniguchi, H., U.S. Patent No. 4 618 592 (1986).Google Scholar
9.Bachilard, B. and Joubert, P., Mater. Sci. Eng. 109A, 247 (1989).CrossRefGoogle Scholar
10.Lenie, C., U.S. Patent No. 3 108 887 (1963).Google Scholar
11.Yamashita, H., Imai, Y., Oguma, R., Hayashi, T., Tamura, M., and Matsuo, H., Japan Patent 61–205606 (1986).Google Scholar
12.Okada, T., Toriyama, M., and Kanzaki, S., J. Eur. Ceram. Soc. 20, 783 (2000).CrossRefGoogle Scholar
13.Kimura, I., Ichiya, K., Ishii, M., and Hotta, N., J. Mater. Sci. Lett. 8, 303 (1989).Google Scholar
14.Weimer, A.W., Cochran, G.A., Eisman, G.A., Henley, J.P., Hook, B.D., Mills, L.K., Guiton, T.A., Knudsen, A.K., Nicholas, N.R., Volmering, J.E., and Moore, W.G., J. Am. Ceram. Soc. 77, 3 (1994).CrossRefGoogle Scholar
15.Nickel, K.G., Riedel, R., and Petzow, G., J. Am. Ceram. Soc. 72, 1804 (1989).CrossRefGoogle Scholar
16.Riedel, R. and Gaudi, K.U., J. Am. Ceram. Soc. 74, 1331 (1991).CrossRefGoogle Scholar
17.Kimura, I., Hotta, N., Saito, N., and Yasukawa, S., Nipp. Seramik. Kyok. Gakuj. Ronb. 96, 6 (1988).Google Scholar
18.Drygurgh, P.M., U.S. Patent No. 4 172 754 (1979).Google Scholar
19.Myay, L., Adv. Ceram. Mater. 1, 150 (1986).CrossRefGoogle Scholar
20.Dunmead, S.D., Moore, W.G., Howard, K.E., and Morse, K.C., U.S. Patent No. 5 649 278 (1997).Google Scholar
21.Bradshaw, S.M. and Spicer, J.L., J. Am. Ceram. Soc. 82, 2293 (1999).CrossRefGoogle Scholar
22.Chung, S.L., Yu, W.L., and Lin, C.N., J. Mater. Res. 14, 1928 (1999).CrossRefGoogle Scholar
23.Merzhanov, A.G. and Borovinskaya, I.P., Combust. Sci. Technol. 10, 195 (1975).CrossRefGoogle Scholar
24.Crider, J.F., Ceram. Eng. Sci. Proc. 3, 519 (1982).Google Scholar
25.Munir, Z.A., Ceram. Bull. 6, 342 (1988).Google Scholar
26.Costantino, M. and Firpo, C., J. Mater. Res. 6, 2397 (1991).Google Scholar
27.Dunmead, S.D., Holt, J.B., and Kingman, D.D., in Combustion and Plasma Synthesis of High Temperature, edited by Munir, Z.A. and Holt, J.B. (VCH Publishers, 1990), p. 186.Google Scholar
28.Miyamoto, Y., Koizumi, M., Sakagami, H., and Nakada, H., Japan Patent No. 63–274605 (1987).Google Scholar
29.Lee, W.C., Tu, C.L., Weng, C.Y., and Chung, S.L., J. Mater. Res. 10, 774 (1995).Google Scholar
30.Bockwski, M., Witek, A., Krukowski, S., Wroblewski, M., Porowski, S., Marin-Ayral, R.M., and Tedenac, J.C., J. Mater. Synth. Proc. 5, 449 (1997).Google Scholar
31.Lin, C.N. and Chung, S.L., J. Mater. Res. 16, 2000 (2001).Google Scholar
32.Tsuchida, T., Kitagawa, T., and Inagaki, M., J. Mater. Sci. 32, 5123 (1997).Google Scholar
33.Jiang, G.J., Zhuang, H.R., Li, W.L., Wu, F.Y., Zhang, B.L., and Fu, X.R., J. Mater. Synth. Proc. 7, 1 (1999).Google Scholar
34.Chen, K., Ge, C., Li, J., and W. Cao, J. Mater. Res. 14, 1944 (1999).Google Scholar
35.Shin, J., Ahn, D.H., Shin, M.S., and Kim, Y.S., J. Am. Ceram. Soc. 83, 1021 (2000).CrossRefGoogle Scholar