Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T08:26:09.843Z Has data issue: false hasContentIssue false

Co-mediated nucleation of erbium/silicon nanoclusters in fused silica

Published online by Cambridge University Press:  21 September 2015

Mert Celikin*
Affiliation:
Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Varennes, QC J3X 1S2, Canada
David Barba
Affiliation:
Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Varennes, QC J3X 1S2, Canada
Andreas Ruediger
Affiliation:
Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Varennes, QC J3X 1S2, Canada
Martin Chicoine
Affiliation:
Regroupement Québécois sur les Matériaux de pointe, Département de Physique, Université de Montréal, Montréal, QC H3C 3J7, Canada
Francois Schiettekatte
Affiliation:
Regroupement Québécois sur les Matériaux de pointe, Département de Physique, Université de Montréal, Montréal, QC H3C 3J7, Canada
Federico Rosei*
Affiliation:
Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Varennes, QC J3X 1S2, Canada; and Center for Self-Assembled Chemical Structures, McGill University, Montreal, QC, H3A 0B8, Canada
*
a)Address all correspondence to these authors. e-mail: mert.celikin@emt.inrs.ca
Get access

Abstract

We investigate the structural evolution of Er/Si nanoclusters obtained in co-implanted fused silica upon annealing via Raman spectroscopy and transmission electron microscopy. The effect of annealing temperature (900–1200 °C) on the nature and the relative fraction of the formed amorphous-Si, Si nanocrystals (Si-nc), and amorphous Er nanoparticles (Er-np) was determined in this ternary Er–Si–O system, showing a change of growth regime above 1100 °C due to the formation of mixed Er/O/Si aggregates. We observe that the nucleation and growth of amorphous Er-np and Si-nc are mutually affected. The 2-fold increase in the size of Er-np when no excess Si+ is present in the matrix indicates that the formation of Si-nc in the proximity of Er clusters hinders Er diffusivity above 1100 °C. This finding shows the importance of nanoclustering for improving the thermal stability of Er-doped silica systems.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kanjilal, A., Rebohle, L., Voelskow, M., Skorupa, W., and Helm, M.: Influence of annealing on the Er luminescence in Si-rich SiO2 layers coimplanted with Er ions. J. Appl. Phys. 104, 103522 (2008).Google Scholar
Pacifici, D., Franzò, G., Priolo, F., Iacona, F., and Dal Negro, L.: Modeling and perspectives of the Si nanocrystals-Er interaction for optical amplification. Phys. Rev. B 67, 2453011 (2003).CrossRefGoogle Scholar
Franzò, G., Vinciguerra, V., and Priolo, F.: Excitation mechanism of rare-earth ions in silicon nanocrystals. Appl. Phys. A 69, 3 (1999).Google Scholar
Pellegrino, P., Garrido, B., Arbiol, J., Garcia, C., Lebour, Y., and Morante, J.R.: Site of Er ions in silica layers codoped with Si nanoclusters and Er. Appl. Phys. Lett. 88, 121915 (2006).Google Scholar
Franzò, G., Boninelli, S., Pacifici, D., Priolo, F., Iacona, F., and Bongiorno, C.: Sensitizing properties of amorphous Si clusters on the 1.54-μm luminescence of Er in Si-rich SiO2. Appl. Phys. Lett. 82, 3871 (2003).CrossRefGoogle Scholar
Talbot, E., Lardé, R., Pareige, P., Khomenkova, L., Hijazi, K., and Gourbilleau, F.: Nanoscale evidence of erbium clustering in Er-doped silicon-rich silica. Nanoscale Res. Lett. 8(1), 18 (2013).Google Scholar
Priolo, F., Franzò, G., Pacifici, D., Vinciguerra, V., Iacona, F., and Irrera, A.: Role of the energy transfer in the optical properties of undoped and Er-doped interacting Si nanocrystals. J. Appl. Phys. 89, 264 (2001).CrossRefGoogle Scholar
Pi, X.D., Zalloum, O.H.Y., Wojcik, J., Knights, A.P., Mascher, P., Todd, A.D.W., and Simpson, P.J.: Formation and oxidation of Si nanoclusters in Er-doped Si-rich SiOx. J. Appl. Phys. 97, 096108 (2005).CrossRefGoogle Scholar
Polman, A., Jacobson, D.C., Lidgard, A., Poate, J.M., and Arnold, G.W.: Photoluminescence and structural characterization of MeV erbium-implanted silica glass. Nucl. Instrum. Methods Phys. Res., Sect. B 5960, 1313 (1991).Google Scholar
Thomas, J., Myara, M., Troussellier, L., Burov, E., Pastouret, A., Boivin, D., Melin, G., Gilard, O., Sotom, M., and Signoret, P.: Radiation-resistant erbium-doped-nanoparticles optical fiber for space applications. Opt. Express 20, 2435 (2012).Google Scholar
Gusarov, A., Van Uffelen, M., Hotoleanu, M., Thienpont, H., and Berghmans, F.: Radiation sensitivity of EDFAs based on highly Er-doped fibers. J. Lightwave Technol. 27, 1540 (2009).CrossRefGoogle Scholar
Crowe, I.F., Kashtiban, R.J., Sherliker, B., Bangert, U., Halsall, M.P., Knights, A.P., and Gwilliam, R.M.: Spatially correlated erbium and Si nanocrystals in coimplanted SiO2 after a single high temperature anneal. J. Appl. Phys. 107, 044316 (2010).Google Scholar
Zhang, M., Cai, R., Zhang, Y., Wang, C., Wang, Y., Ross, G.G., and Barba, D.: Evolution of microstructural defects with strain effects in germanium nanocrystals synthesized at different annealing temperatures. Mater. Charact. 93, 1 (2014).Google Scholar
Faraci, G., Gibilisco, S., Russo, P., Pennisi, A.R., and La Rosa, S.: Modified Raman confinement model for Si nanocrystals. Phys. Rev. B 73, 033307 (2006).CrossRefGoogle Scholar
Barba, D., Demarche, J., Martin, F., Terwagne, G., and Ross, G.G.: Control of the Ge nanocrystal synthesis by co-implantation of Si+. J. Appl. Phys. 114, 074306 (2013).Google Scholar
Laachira, S., Moussetadb, M., Adhirib, R., and Fahlia, A.: Crystal-Field Energy Levels of Trivalent Erbium Ion in Cubic Symmetry. Z. Naturforsch. 66a, 457 (2011).Google Scholar
Merlen, A., Sangar, A., Torchio, P., Kallepalli, L.N.D., Grojo, D., Uteza, O., and Delaporte, P.: Multi-wavelength enhancement of silicon Raman scattering by nanoscale laser surface ablation. Appl. Surf. Sci. 284, 545 (2013).CrossRefGoogle Scholar
Mustafa, D., Biggemann, D., Martens, J.A., Kirschhock, C.E.A., Tessler, L.R., and Breynaert, E.: Erbium enhanced formation and growth of photoluminescent Er/Si nanocrystals. Thin Solid Films 536, 196 (2013).Google Scholar
John, J.S., Coffer, J.L., Chen, Y., and Pinizzotto, R.F.: Size control of erbium-doped silicon nanocrystals. Appl. Phys. Lett. 77, 1635 (2000).Google Scholar
Wang, Y.Q., Smirani, R., and Ross, G.G.: The effect of implantation dose on the microstructure of silicon nanocrystals in SiO2. Nanotechnology 15, 1554 (2004).Google Scholar
Ren, Y-G.F.: Er doped silicon as an optoelectronic semiconductor material. Ph.D. Thesis, Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 1994.Google Scholar
Gourbilleau, F., Levalois, M., Dufour, C., Vicens, J., and Rizk, R.: Optimized conditions for an enhanced coupling rate between Er ions and Si nanoclusters for an improved 1.54-μm emission. J. Appl. Phys. 95, 3717 (2004).CrossRefGoogle Scholar
Zhang, C.S., Sun, J.Z., and Zhang, F.: Structure and composition evolutions of Er-doped Si-rich SiO2 film under annealing. Microelectron. Eng. 81, 378 (2005).Google Scholar
Yan, D., Wu, P., Zhang, S.P., Liang, L., Yang, F., Pei, Y.L., and Chen, S.: Assignments of the Raman modes of monoclinic erbium oxide. J. Appl. Phys. 114, 193502 (2013).Google Scholar
Isshiki, H., De Dood, M.J.A., Polman, A., and Kimura, T.: Self-assembled infrared-luminescent Er–Si–O crystallites on silicon. Appl. Phys. Lett. 85, 4343 (2004).CrossRefGoogle Scholar
Polman, A.: Erbium implanted thin film photonic materials. J. Appl. Phys. 82, 1 (1997).Google Scholar
Kollewe, D., Bachmann, T., and Sigle, W.: Redistribution of implanted Er in SiO2 on Si studied by combined transmission electron microscopy and Rutherford backscattering analysis. Phys. Lett. A 253, 305 (1999).Google Scholar