Hostname: page-component-5f745c7db-sbzbt Total loading time: 0 Render date: 2025-01-06T23:50:30.592Z Has data issue: true hasContentIssue false

A comparative study of side chain liquid crystalline polymers and their monomers designed for nonlinear optical applications

Published online by Cambridge University Press:  08 February 2011

R.B. Findlay
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, United Kingdom
T.J. Lemmon
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, United Kingdom
A.H. Windle
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, United Kingdom
Get access

Abstract

Characterizations of side chain liquid crystalline polymers and their monomers point toward chemical structures and processing techniques which optimize their suitability for nonlinear optical applications. Polymers with methacrylate backbones and nitrostilbene or nitrobiphenyl side groups are studied; they tend to form smectic phases, but no solid crystallinity. By copolymerizing with nonmesogenic backbone units, the smectic-isotropic transition temperature can be controlled and may fall below the glass transition temperature. There is evidence for a significant degree of pretransitional alignment due to the surface fields, and mesogen ordering perpendicular to flow-induced backbone alignment. Very rapid cooling can suppress the highly scattering polydomain smectic phase.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Leslie, T. M., DeMartino, R. N., Choe, E. Won, Khanarian, G., Haas, D., Nelson, G., Stamatoff, J. B., Stuetz, D. E., Chia-Chi Teng, and Hyun-Nam Yoon, Mol. Cryst. Liq. Cryst. 153, 451477 (1987).Google Scholar
2Stamatoff, J. B., Buckley, A., Calundann, G., Choe, E. W., DeMartino, R., Khanarian, G., Leslie, T., Nelson, G., Stuetz, D., Teng, C. C., and Yoon, H. N., SPIE Molecular and Polymeric Opto-electronic Materials: Fundamentals and Applications 682, 8592 (1986).CrossRefGoogle Scholar
3Finkelmann, H., Polymer Liquid Crystals, edited by Ciferri, A., Krigbaum, W. R., and Meyer, R. B. (Academic Press Inc., New York, 1982, ISBN 0–12–174680–1), Chap. 2.Google Scholar
4Shibaev, V. P. and Platé, N. A., Liquid Crystal Polymers II/III, edited by Gordon, M. (Springer-Verlag, 1984), pp. 173252.CrossRefGoogle Scholar
5Zugenmaier, P. and Henning Menzel, Makromol. Chem. 189, 26472655 (1988).CrossRefGoogle Scholar
6Percec, V. and Pugh, C., Side Chain Liquid Crystal Polymers, edited by McArdle, C. B. (Blackie, London, or Chapman and Hall, New York), Chap. 3.Google Scholar
7Kozak, A., Simon, G. P., and Williams, G., Polymer Commun. 30, 102105 (1989).Google Scholar
8Simon, R. and Coles, H. J., Polymer 27, 811816 (1986).CrossRefGoogle Scholar
9Attard, G. S. and Williams, G., Polymer Commun. 27, 6668 (1986).CrossRefGoogle Scholar
10Attard, G. S. and Williams, G., Polymer Commun. 27, 25 (1986).CrossRefGoogle Scholar
11Wendorff, J. H. and Eich, M., Mol. Cryst. Liq. Cryst. 169, 133166 (1989).CrossRefGoogle Scholar
12Möhlmann, G. R. and van der Vorst, C. P. J.M., Side Chain Liquid Crystal Polymers, edited by McArdle, C. B. (Blackie, London, or Chapman and Hall, New York), Chap. 12.Google Scholar
13Noirez, L. and Pepy, G., Phys. Scripta T25, 102106 (1989).CrossRefGoogle Scholar
14Emsley, J. W., Imrie, C. T., Luckhurst, G. R., and Newmark, R. D., Molecular Physics 63, 317327 (1988).CrossRefGoogle Scholar
15Luckhurst, G. R., J. Chem. Soc. Faraday Trans. 2 84, 961986 (1988)CrossRefGoogle Scholar