Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T21:21:58.718Z Has data issue: false hasContentIssue false

A comparative study on crystallization behavior, phase stability, and binding energy in pure and Cr-doped TiO2 nanotubes

Published online by Cambridge University Press:  29 August 2012

It Meng Low*
Affiliation:
Department of Applied Physics, Centre for Materials Research, Curtin University, Perth, Western Australia 6845, Australia
Hani Albetran
Affiliation:
Department of Applied Physics, Centre for Materials Research, Curtin University, Perth, Western Australia 6845, Australia
Victor Manuel Prida
Affiliation:
Department of Physics, University of Oviedo, Calvo Sotelo s/n, 33007-Oviedo, Spain
Victor Vega
Affiliation:
Department of Physics, University of Oviedo, Calvo Sotelo s/n, 33007-Oviedo, Spain
Posman Manurung
Affiliation:
Department of Physics, University of Lampung, Bandar Lampung 35145, Indonesia
Mihail Ionescu
Affiliation:
Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Sydney, New South Wales 2234, Australia
*
a)Address all correspondence to this author. e-mail: j.low@curtin.edu.au
Get access

Abstract

Use of nanostructured TiO2 for photocatalysis is a cost-effective and sustainable technology. However, to make this an attractive viable technology will require the design of TiO2 photocatalyst capable of harnessing the energy of visible light. One possible solution is the doping of TiO2 to reduce its band gap. In this paper, the effect of Cr-doping by ion implantation on the in situ crystallization and phase stability of anodic TiO2 nanotubes at elevated temperature is described. Cr-doping has dramatically reduced the fraction of anatase-to-rutile transformation and lowered the crystallization temperature of anatase from 600 to 400 °C and rutile from 600 to 500 °C. Ion beam analysis by Rutherford backscattering spectrometry has confirmed the existence of Cr ions composition gradation in doped TiO2 nanotubes. The real doping of Ti lattices with Cr ions was evidenced by the analyses of surface compositions and chemical states of the nanotubes using x-ray photoelectron spectroscopy.

Type
Reviews
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hanaor, D. and Sorrell, C.: Review of the anatase to rutile phase transformation. J. Mater. Sci. 46, 855874 (2011).Google Scholar
Anpo, M., Ichihashi, Y., Takeuchi, M., and Yamashita, H.: Design of unique titanium oxide photocatalysts by an advanced metal ion-implantation method and photocatalytic reactions under visible light irradiation. Res. Chem. Intermed. 24, 143 (1998).CrossRefGoogle Scholar
Zaleska, A., Sobczak, J.W., Grabowska, E., and Hupka, J.: Preparation and photocatalytic activity of boron-modified TiO2 under UV and visible light. Appl. Catal., B 78, 92 (2008).Google Scholar
Saupe, G.B., Zhao, T.U., Bang, J., Desu, N.R., Carballo, G.A., Ordonem, R., and Bubphamala, T.: Evaluation of a new porous titanium-niobium mixed oxide for photocatalytic water decontamination. Microchem. J. 81, 156 (2005).Google Scholar
Hamal, D.B. and Klabunde, K.J.: Synthesis, characterization, and visible light activity of new nanoparticle photocatalysts based on silver, carbon, and sulfur-doped TiO2. J. Colloid Interface Sci. 311, 514 (2007).CrossRefGoogle ScholarPubMed
Virkutyte, J., Baruwati, B., and Varma, R.S.: Visible light induced photobleaching of methylene blue over melamine-doped TiO2 nanocatalyst. Nanoscale 2, 1109 (2010).Google Scholar
Umebayashi, T., Yamaki, T., and Tanaka, S.: Visible light-induced degradation of methylene blue on S-doped TiO2. Chem. Lett. 32, 330 (2003).Google Scholar
Sakthivel, S., Janczarek, M., and Kisck, H.: Visible light activity and photo-electrochemical properties of nitrogen-doped TiO2. J. Phys. Chem. B 108, 19384 (2004).CrossRefGoogle Scholar
Choi, Y., Umebayashi, T., and Yoshikawa, M.: Fabrication and characterization of C-doped anatase TiO2 photocatalysts. J. Mater. Sci. 39, 1837 (2004).Google Scholar
Irie, H., Watanabe, Y., and Hashimoto, K.: Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst. Chem. Lett. 32, 772 (2003).Google Scholar
Sakthivel, S. and Kisch, H.: Daylight photocatalysts by carbon-modified titanium dioxide. Angew. Chem. Int. Ed. 42, 4908 (2003).CrossRefGoogle Scholar
Asahi, R., Morikawa, T., and Ohwaki, T.: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 (2001).Google Scholar
Ren, W., Ai, Z., Jia, F., Zhang, L., Fan, X., and Zou, Z.: Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Appl. Catal., B 69, 138 (2007).Google Scholar
Ohno, T., Akiyoshi, M., Umebayashi, T., Asai, K., Mitsui, T., and Matsumura, M.: Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl. Catal., A 265, 115 (2004).Google Scholar
Bai, B.C., Im, J.S., Kim, J.G., and Lee, Y.S.: Photo-catalytic degradation on B, C, N, and F element co-doped TiO2 under visible-light irradiation. J. Korean Ind. Eng. Chem. 21, 2933 (2010).Google Scholar
Shao, G.: Red shift in manganese- and iron-doped TiO2: A DFT+U analysis. J. Phys. Chem. C 113, 6800 (2009).Google Scholar
Shao, G.: Electronic structures of manganese-doped rutile TiO2 from first principles. J. Phys. Chem. C 112, 18677 (2008).Google Scholar
Xia, X.H., Lu, L., Walton, A.S., Ward, M., Han, X.P., Brydson, R., Luo, J.K., and Shao, G.: Origin of significant visible-light absorption properties of Mn-doped TiO2 thin films. Acta Mater. 60, 19741985 (2012).Google Scholar
Roy, P., Berger, S., and Schmuki, P.: TiO2 nanotubes: Synthesis and applications. Angew. Chem. Int. Ed. 50, 29042939 (2011).Google Scholar
Kuroda, Y., Mori, T., Yagi, K., Makihata, N., Kawahara, Y., Nagao, M., and Kittaka, S.: Preparation of visible-light-responsive TiO2-xNx photocatalyst by a sol-gel method: Analysis of the active center on TiO2 that reacts with NH3. Langmuir 21, 8026 (2005).Google Scholar
Hattori, A., Yamamoto, M., Tada, H., and Ito, S.: A promoting effect of NH4F addition on the photocatalytic activity of sol-gel TiO2 films. Chem. Lett. 27, 707 (1998).Google Scholar
Shen, Y., Xiong, T., Li, T., and Yang, K.: Tungsten and nitrogen co-doped TiO2 nano-powders with strong visible light response. Appl. Catal., B 83, 177 (2008).CrossRefGoogle Scholar
Jagadale, T.C., Takale, S.P., Sonawane, R.S., Joshi, H.M., Patil, S.I., Kale, B.B., and Ogale, S.B.: N-doped TiO2 nanoparticle based visible light photocatalyst by modified peroxide sol-gel method. J. Phys. Chem. C 112, 14595 (2008).Google Scholar
Tseng, Y., Kuo, C., Huang, C., Li, Y., Chou, P., Cheng, C., and Wong, M.: Visible-light-responsive nano-TiO2 with mixed crystal lattice and its photocatalytic activity. Nanotechnology 17, 2490 (2006).Google Scholar
Yamaki, T., Sumita, T., and Yamamoto, S.: Formation of TiO2-xFx compounds in fluorine-implanted TiO2. J. Mater. Sci. Lett. 21, 33 (2002).Google Scholar
Shen, H., Mi, L., Xu, P., Shen, W., and Wang, P.N.: Visible-light photocatalysis of nitrogen-doped TiO2 nanoparticulate films prepared by low-energy ion implantation. Appl. Surf. Sci. 253, 7024 (2007).Google Scholar
Park, J., Lee, J.Y., and Cho, J.H.: Ultraviolet-visible absorption spectra of N-doped TiO2 film deposited on sapphire. J. Appl. Phys. 100, 113534 (2006).Google Scholar
Yamashita, H., Ichihashi, Y., and Takeuchi, M.: Characterization of metal ion-implanted titanium oxide photocatalysts operating under visible light irradiation. J. Synchrotron Radiat. 6, 451 (1999).Google Scholar
Yamaki, T., Umebayashi, T., and Sumita, T.: Fluorine-doping in titanium dioxide by ion implantation technique. Nucl. Instrum. Methods Phys. Res., Sect. B 206, 254 (2003).Google Scholar
Yamashita, H., Harada, M., Misaka, J., Takeushi, M., and Anpo, M.: Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts. J. Photochem. Photobiol., A 148, 257 (2002).Google Scholar
Vega, V., Prida, V.M., Hernández-Vélez, M., Manova, E., Aranda, P., Ruiz-Hitzky, E., and Vázquez, M.: Influence of anodic conditions on self-ordered growth of highly aligned titanium oxide nanopores. Nanoscale Res. Lett. 2, 355 (2007).Google Scholar
Vega, V., Cerdeira, M.A., Prida, V.M., Alberts, D., Bordel, N., Pereiro, R., Mera, F., García, S., Hernández-Vélez, M., and Vázquez, M.: Electrolyte influence on the anodic synthesis of TiO2 nanotube arrays. J. Non-Cryst. Solids 354 52335235 (2008).Google Scholar
Cullity, B.D. and Stock, S.R.: Elements of X-Ray Diffraction, 3rd ed. (Prentice-Hall Inc., Englewood Cliffs, NJ, 2001); pp. 167171.Google Scholar
Djerdj, I. and Tonejc, A.M.: Structural investigations of nanocrystalline TiO2 samples. J. Alloys Compd. 413, 159174 (2006).Google Scholar
Howard, C.J., Sabine, T.M., and Dickson, F.: Structural and thermal parameters for rutile and anatase. Acta Crystallogr., Sect. B: Struct. Sci 47, 462468 (1991).Google Scholar
Spurr, R.A. and Myers, H.: Quantitative analysis of anatase-rutile mixtures with an x-ray diffractometer. Anal. Chem. 29, 760 (1957).Google Scholar
Riyas, S., Krishnan, G., and Mohandas, P.N.: Anatase-rutile transformation in doped titania under argon and hydrogen atmospheres. Adv. Appl. Ceram. 106, 255 (2007).Google Scholar
Mackenzie, K.J.D.: Calcination of titania V. Kinetics and mechanism of the anatase-rutile transformation in the presence of additives. Trans. J. Br. Ceram. Soc. 74, 77 (1975).Google Scholar
Prida, V.M., Hernandez-Velez, M., Pirota, K.R, Menendez, A., and Vazquez, M.: Synthesis and magnetic properties of Ni nano-cylinders in self-aligned and randomly disordered grown titania nanotubes. Nanotechnology 16, 26962702 (2005).Google Scholar
Varghese, O.K., Gong, D., Paulose, M., Grimes, C.A., and Dickeya, E.C.: Crystallization and high-temperature structural stability of TiO2 nanotube arrays. J. Mater. Res. 18, 156165 (2003).Google Scholar
You, M., Kim, T.G., and Sung, Y.M.: Synthesis of Cu-doped TiO2 nanorods with various aspect ratios and dopant concentrations. Cryst. Growth Des. 10, 983987 (2010).Google Scholar