Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-03T22:33:56.241Z Has data issue: false hasContentIssue false

Comparative Study on Electrical and Microstructural Characteristics of ZrO2 and HfO2 Grown by Atomic Layer Deposition

Published online by Cambridge University Press:  03 March 2011

Hyoungsub Kim
Affiliation:
Department of Advanced Materials Engineering, Sungkyunkwan University, Suwon 440-746, Korea
Krishna C. Saraswat
Affiliation:
Department of Electrical Engineering, Stanford University, Stanford, California 94305
Paul C. McIntyre
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305
Get access

Abstract

Ultra-thin ZrO2 and HfO2 dielectric films grown by atomic layer deposition (ALD) are quite promising materials for gate dielectric applications in future transistors, and they exhibit significantly different as-grown microstructures: polycrystalline and amorphous phases, respectively. However, under the identical deposition conditions, both metal oxides show surprisingly similar capacitance–voltage (C–V) characteristics as a function of film thickness, implying that the identities and densities of fixed charge and bulk trapping charge are similar. Factors other than the film microstructure, such as concentration of impurities incorporated during the film deposition, are believed predominantly to control important C–V characteristics. Only the dielectric constant appears to depend significantly on the identity of the dielectric material. It is found that the dielectric constant of ALD-HfO2 (∼20) is significantly lower than that of ZrO2 (∼30) due to the differences in microstructure and also atomic density of the film. In terms of the leakage current characteristics, the effective potential barrier heights between Pt and these two dielectric films are identical (∼2.3 eV) within the experimental uncertainty. Implications for the electrode/dielectric interface electronic structure are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Frosch, C.J. and Derick, L.: Surface protection and selective masking during diffusion in silicon. J. Electrochem. Soc. 104, 547 (1957).CrossRefGoogle Scholar
2Muller, D.A., Sorsch, T., Moccio, S., Baumann, F.H., Evans-Lutterodt, K. and Timp, G.: Electronic structure at the atomic scale of ultrathin gate oxides. Nature 399, 758 (1999).CrossRefGoogle Scholar
3Tang, S., Wallace, R.M., Seabaugh, A. and King-Smith, D.: Evaluating the minimum thickness of gate oxide on silicon using first-principles method. Appl. Surf. Sci. 135, 137 (1998).CrossRefGoogle Scholar
4Ghani, T., Mistry, K., Packan, P., Thompson, S., Stettler, M., Tyagi, S. and Bohr, M.: Scaling challenges and device design requirements for high performance sub-50 nm gate length planar CMOS transistors. Tech. Dig. VLSI Symp. 2000, 174 (2000).Google Scholar
5Lo, S-H., Buchanan, D.A., Taur, Y. and Wang, W.: Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET’s. IEEE Electron Device Lett. 18, 209 (1997).CrossRefGoogle Scholar
6Wilk, G.D., Wallace, R.M. and Anthony, J.M.: High-kappa gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 89, 5243 (2001).CrossRefGoogle Scholar
7Ritala, M., Kukli, K., Raisanen, P.I., Leskela, M., Sajavaara, T. and Keinonen, J.: Atomic layer deposition of oxide thin films with metal alkoxides as oxygen sources. Science 288, 319 (2000).CrossRefGoogle ScholarPubMed
8Robertson, J.: Band offsets of wide-band-gap oxides and implications for future electronic devices. J. Vac. Sci. Technol. B 18, 1785 (2000).CrossRefGoogle Scholar
9Kim, H., McIntyre, P.C. and Saraswat, K.C.: Microstructural evolution of ZrO2–HfO2 nanolaminate structures grown by atomic layer deposition. J. Mater. Res. 19, 643 (2004).CrossRefGoogle Scholar
10Yang, K.J. and Hu, C.M.: MOS capacitance measurements for high-leakage thin dielectrics. IEEE Trans. Electron Devices 46, 1500 (1999).CrossRefGoogle Scholar
11Ruh, E., Garrerr, H.J., Domagala, R.F. and Tallan, N.M.: System zirconia–hafnia. J. Am. Ceram. Soc. 51, 27 (1968).CrossRefGoogle Scholar
12Dey, S.K., Wang, C-G., Tang, D., Kim, M.J., Carpenter, R.W., Werkhoven, C. and Shero, E.: Atomic layer chemical vapor deposition of ZrO2-based dielectric films: Nanostructure and nanochemistry. J. Appl. Phys. 93, 4144 (2003).CrossRefGoogle Scholar
13Scanlan, C.M., Gajdardziska-Josifovska, M. and Aita, C.R.: Tetragonal zirconia growth by nanolaminate formation. Appl. Phys. Lett. 64, 3548 (1994).CrossRefGoogle Scholar
14Garvie, R.C. and Swain, M.V.: Thermodynamics of the tetragonal to monoclinic phase transformation in constrained zirconia microcrystals. I. In the absence of an applied stress field. J. Mater. Sci. 20, 1193 (1985).CrossRefGoogle Scholar
15Aita, C.R., Wiggins, M.D., Whig, R., Scanlan, C.M. and Gajdardziska-Josifovska, M.: Thermodynamics of tetragonal zirconia formation in a nanolaminate film. J. Appl. Phys. 79, 1176 (1996).CrossRefGoogle Scholar
16Ho, M.-Y., Gong, H., Wilk, G.D., Busch, B.W., Green, M.L., Voyles, P.M., Muller, D.A., Bude, M., Lin, W.H., See, A., Loomans, M.E., Lahiri, S.K. and Räisänen, P.I.: Morphology and crystallization kinetics in HfO2 thin films grown by atomic layer deposition. J. Appl. Phys. 93, 1477 (2003).CrossRefGoogle Scholar
17Kim, H., McIntyre, P.C., and Saraswat, K.C.: Unpublished work.Google Scholar
18Lee, B.H., Kang, L., Qi, W.-J., Nieh, R., Jeon, Y., Onishi, K. and Lee, J.C.: Ultrathin hafnium oxide with low leakage and excellent reliability for alternative gate dielectric application. Tech. Dig. Int. Electron Devices Mtg. 1999, 133 (1999).Google Scholar
19Kang, L., Lee, B.H., Qi, W.-J., Jeon, Y., Nieh, R., Gopalan, S., Onishi, K. and Lee, J.C.: Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric. IEEE Electron Device Lett. 21, 181 (2000).CrossRefGoogle Scholar
20Qi, W.-J., Nieh, R., Lee, B.H., Kang, L., Jeon, Y., Onishi, K., Ngai, T., Banerjee, S. and Lee, J.C.: MOSCAP and MOSFET characteristics using ZrO2 gate dielectric deposited directly on Si. Tech. Dig. Int. Electron Devices Mtg. 1999, 145 (1999).Google Scholar
21Houssa, M., Afanas’ev, V.V., Stesmans, A. and Heyns, M.M.: Variation in the fixed charge density of SiOx/ZrO2 gate dielectric stacks during postdeposition oxidation. Appl. Phys. Lett. 77, 1885 (2000).CrossRefGoogle Scholar
22Thompson, D.P., Dickins, A.M. and Thorp, J.S.: The dielectric properties of zirconia. J. Mater. Sci. 27, 2267 (1992).CrossRefGoogle Scholar
23Gerstenberg, D. Thin film capacitors, in Handbook of Thin Film Technology , edited by Maissel, L.I. and Glang, R. (McGraw-Hill, New York, 1970) Chap. 17, p. 21.Google Scholar
24Wilk, G.D. and Muller, D.A.: Correlation of annealing effects on local electronic structure and macroscopic electrical properties for HfO2 deposited by atomic layer deposition. Appl. Phys. Lett. 83, 3984 (2003).CrossRefGoogle Scholar
25Xu, Z., Houssa, M., Gendt, S.D. and Heyns, M.: Polarity effect on the temperature dependence of leakage current through HfO2/SiO2 gate dielectric stacks. Appl. Phys. Lett. 80, 1975 (2002).CrossRefGoogle Scholar
26Sze, S.M.: Physics of semiconductor devices, 2nd ed.; (Wiley, New York, 1981) p. 403.Google Scholar
27Zhu, W.J., Ma, T.P., Tamagawa, T., Kim, J. and Di, Y.: Current transport in metal/hafnium oxide/silicon structure. IEEE Electron Device Lett. 23, 97 (2002).CrossRefGoogle Scholar
28Houssa, M., Tuominen, M., Naili, M., Afanas’ev, V., Stesmans, A., Hukka, S. and Heyns, M.M.: Trap-assisted tunneling in high permittivity gate dielectric stacks. J. Appl. Phys. 87, 8615 (2000).CrossRefGoogle Scholar
29Kim, H., McIntyre, P.C. and Saraswat, K.C.: Effects of crystallization on the electrical properties of ultrathin HfO2 dielectrics grown by atomic layer deposition. Appl. Phys. Lett. 82, 106 (2003).CrossRefGoogle Scholar