Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T00:16:16.027Z Has data issue: false hasContentIssue false

Comparison of the neutron and ion irradiation response of nano-oxides in oxide dispersion strengthened materials

Published online by Cambridge University Press:  20 July 2015

Joël Ribis*
Affiliation:
CEA, DEN, Service de Recherches Métallurgiques Appliquées, F-91191 Gif sur Yvette, France
Eric Bordas
Affiliation:
CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif sur Yvette, France
Patrick Trocellier
Affiliation:
CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif sur Yvette, France
Yves Serruys
Affiliation:
CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif sur Yvette, France
Yann de Carlan
Affiliation:
CEA, DEN, Service de Recherches Métallurgiques Appliquées, F-91191 Gif sur Yvette, France
Alexandre Legris
Affiliation:
UMET, CNRS/UMR 8207, Univ. Lille 1, 59655 Villeneuve d’Ascq, France
*
a)Address all correspondence to this author. e-mail: joel.ribis@cea.fr
Get access

Abstract

The Oxide Dispersion Strengthened (ODS) materials are potential candidates as cladding tubes for Sodium-cooled Fast Reactors. The nano-oxides are finely dispersed within the grains and confer excellent mechanical properties to these alloys. Hence, assessing nano-particle stability under irradiation remains crucial to guarantee safe use of these materials. Although neutron irradiation remains a binding and challenging experimental study to conduct, difficulties can be overcome by ion beam processing. Ion beam processing of the ODS material allows to identify the radiation-induced Ostwald ripening as the mechanism governing the nano-particle response under irradiation. The result is the increase in size and a decrease in density of the finely dispersed Y2Ti2O7 nano-particles. Under neutron irradiation, radiation-induced Ostwald ripening appears to be less effective since a slight growth of nano-particles is observed. Further, our approach shows that nanoparticle growth kinetics should scale as φ1/3, φ being the radiation flux. This suggests that the low irradiation flux is at the origin of the slower growth kinetics of the neutron irradiated particles. Both neutron and ion irradiation induce a modification of the nanoparticles/matrix interfaces which are generally flat and sharp prior to irradiation and present steps after irradiation. This could alter the nano-particle coarsening during irradiation.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

de Carlan, Y., Béchade, J-L., Dubuisson, P., Séran, J-L., Billot, P., Bougault, A., Cozzika, T., Doriot, S., Hamon, D., Henry, J., Ratti, M., Lochet, N., Nunes, D., Olier, P., Leblond, T., and Mathon, M-H.: CEA developments of new ferritic ODS alloys for nuclear applications. J. Nucl. Mater. 386388, 430432 (2009).Google Scholar
Yamashita, S., Akasaka, N., Ukai, S., and Ohnuki, S.: Microstructural development of a heavily neutron-irradiated ODS ferritic steel (MA957) at elevated temperature. J. Nucl. Mater. 367370, 202 (2007).CrossRefGoogle Scholar
Gelles, D.S.: Microstructural examination of commercial ferritic alloys at 200 dpa. J. Nucl. Mater. 233237, 293 (1996).Google Scholar
Yamashita, S., Akasaka, N., and Ohnuki, S.: Nano-oxide particle stability of 9–12Cr grain morphology modified ODS steels under neutron irradiation. J. Nucl. Mater. 329333, 377 (2004).Google Scholar
Akasaka, N., Yamashita, S., Yoshitake, T., Ukai, S., and kimura, A.: Microstructural changes of neutron irradiated ODS ferritic and martensitic steels. J. Nucl. Mater. 329333, 1053 (2004).Google Scholar
Ribis, J. and Lozano-Perez, S.: Nano-cluster stability following neutron irradiation in MA957 oxide dispersion strengthened material. J. Nucl. Mater. 444, 314 (2014).Google Scholar
Rogozhkin, S.V., Aleev, A.A., Zaluzhnyi, A.G., Nikitin, A.A., Iskandarov, N.A., Vladimirov, P., Lindau, R., and Möslang, A.: Atom probe characterization of nano-scaled features in irradiated ODS Eurofer steel. J. Nucl. Mater. 409, 94 (2011).Google Scholar
Pareige, P., Miller, M.K., Stoller, R.E., Hoelzer, D.T., Cadel, E., and Radiguet, B.: Stability of nanometer sized oxide clusters in mechanically-alloyed steel under ion-induced displacement cascade damage conditions. J. Nucl. Mater. 360, 136 (2007).Google Scholar
Yutani, K., Kasada, R., Kishimoto, H., and Kimura, A.: J. ASTM Int. 4(7), 149 (2007).Google Scholar
Kimura, A., Cho, H.S., Toda, N., Kasada, R., Yutani, K., Kishimoto, H., Iwata, N., Ukai, S., and Fujiwara, M.: High burn up fuel cladding materials R&D for advanced nuclear systems. J. Nucl. Sci. Technol. 44, 323 (2007).Google Scholar
Kishimoto, H., Kasada, R., Hashhitomi, O., and kimura, A.: Stability of Y–Ti complex oxides in Fe–16Cr–0.1Ti ODS ferritic steel before and after heavy-ion irradiation. J. Nucl. Mater. 386388, 533 (2009).CrossRefGoogle Scholar
Kishimoto, H., Yutani, K., Kasada, R., Hashitomi, O., and Kimura, A.: Heavy-ion irradiation effects on the morphology of complex oxide particles in oxide dispersion strengthened ferritic steels. J. Nucl. Mater. 367370, 179 (2007).Google Scholar
Certain, A.G., Field, K.G., Allen, T.R., Miller, M.K., Bentley, J., and Busby, J.T.: Response of nanoclusters in a 9Cr ODS steel to 1 dpa, 525 °C proton irradiation. J. Nucl. Mater. 407, 2 (2010).Google Scholar
Certain, A., Kuchibhatla, K., Shutthanandan, V., Hoelzer, D.T., and Allen, T.R.: Radiation stability of nanoclusters in nano-structured oxide dispersion strengthened (ODS) steels. J. Nucl. Mater. 434, 311 (2013).CrossRefGoogle Scholar
Lescoat, M-L., Ribis, J., Chen, Y., Marquis, E.A., Bordas, E., Trocellier, P., Serruys, Y., Gentils, A., Kaïtasov, O., de Carlan, Y., and Legris, A.: Radiation-induced Ostwald ripening in oxide dispersion strengthened ferritic steels irradiated at high ion dose. Acta Mater. 78, 328 (2014).CrossRefGoogle Scholar
Yamashita, S., Oka, K., Ohnuki, S., Akasaka, N., and Ukai, S.: Phase stability of oxide dispersion-strengthened ferritic steels in neutron irradiation. J. Nucl. Mater. 307311, 283 (2012).Google Scholar
Alamo, A., Lambard, V., Averty, X., and Mathon, M-H.: Assessment of ODS-14%Cr ferritic alloy for high temperature applications. J. Nucl. Mater. 329333, 333 (2004).CrossRefGoogle Scholar
Mathon, M-H., de Carlan, Y., Averty, X., Alamo, A., and de Novion, C-H.: Small angle neutron scattering study of irradiated martensitic steels: relation between microstructural evolution and hardening. J. ASTM Int. 2(9), 121 (2005).Google Scholar
Miller, M.K. and Hoelzer, D.T.: Effect of neutron irradiation on nanoclusters in MA957 ferritic alloys. J. Nucl. Mater. 418, 307 (2011).CrossRefGoogle Scholar
Liu, C., Yu, C., Hasimoto, N., Ohnuki, S., Ando, M., Shiba, K., and Jitsukawa, S.: Micro-structure and micro-hardness of ODS steels after ion irradiation. J. Nucl. Mater. 417, 270 (2011).CrossRefGoogle Scholar
Kishimoto, H., Kasada, R., Kimura, A., Inoue, M., Okuda, T., Abe, F., Ohnuki, S., and Fujisawa, T.: Super ODS steels R&D for fuel cladding of next generation nuclear systems: Ion irradiation effects at elevated temperatures. In Proceedings of ICAPP’09, Tokyo, Japan, 2009; p. 9219.Google Scholar
He, J., wan, F., Sridharan, K., Allen, T.R., Certain, A., Shutthanandan, V., and Qu, Y.W.: Stability of nanoclusters in 14YWT oxide dispersion strengthened steel under heavy-ion irradiation by atom probe tomography. J. Nucl. Mater. 455, 41 (2014).Google Scholar
Hide, K., Sekimura, N., Fukuya, K., Kusanagi, H., Taguchi, M., Satake, T., Arai, Y., Limuna, M., Takaku, H., and Ishino, S.: Microstructural change in ferritic steels under heavy ion irradiation. In Effects of Radiation on Materials: 14th International Symposium, ASTM STP 1046, Vol. I, Packan, N.H., Stoller, R.E., and Kumar, A.S. eds.; American Society for Testing and Materials: Philadelphia, 1989; p. 61.Google Scholar
Allen, T.R., Gan, J., Cole, J.I., Ukai, S., Shutthanandan, S., and Thevuthasan, S.: The stability of 9Cr-ODS oxide particles under heavy-ion irradiation. Nucl. Sci. Eng. 151, 305 (2005).Google Scholar
de Castro, V., Briceno, M., Lozano-Perez, S., Trocellier, P., Roberts, S.G., and Pareja, R.: TEM characterization of simultaneous triple ion implanted ODS Fe12Cr. J. Nucl. Mater. 455, 157 (2014).Google Scholar
Pellegrino, S., Trocellier, P., Miro, S., Serruys, Y., Bordas, E., Martin, H., Chaäbane, N., Vaubaillon, S., Gallien, J-P., and Beck, L.: The JANNUS saclay facility: A new platform for materials irradiation, implantation and ion beam analysis. Nucl. Instrum. Methods Phys. Res., Sect. B 261, 34 (2012).Google Scholar
Stoller, R.E., Toloczko, M.B., Was, G.S., Certain, A.G., Dwaraknath, S.D., and Garner, F.A.: On the use of SRIM for computing radiation damage exposure. Nucl. Instrum. Methods Phys. Res., Sect. B 310, 75 (2013).Google Scholar
Miller, M.K., Kenik, E.A., Russel, K.F., Heatherly, L., Hoelzer, D.T., and Maziasz, P.J.: Atom probe tomography of nanoscale particles in ODS ferritic alloys. Mater. Sci. Eng., A 353, 140 (2003).Google Scholar
Ribis, J. and de Carlan, Y.: Interfacial strained structure and orientation relatioships of the nanosized oxide particles deduced from elasticity-driven morphology in oxide dispersion strengthened materials. Acta Mater. 60, 238 (2012).Google Scholar
Béchade, J-L., Menut, D., Lescoat, M-L., Sitaud, B., Schlutig, S., Solari, P.L., Llorens, I., Hermanges, H., de Carlan, Y., Ribis, J., and Toualbi, L.: Application of synchrotron radiation to analyse the precipitation in ODS materials before irradiation in Fe-9%Cr single grain of powder and consolidated Fe-18%Cr. J. Nucl. Mater. 428, 183 (2012).CrossRefGoogle Scholar
Menut, D., Béchade, J-L., Cammelli, S., Schlutig, S., Sitaud, B., and Solari, P-L.: Application of synchrotron radiation to analyze microstructural evolution of nuclear materials under neutron irradiation. J. Mater. Res. 30, 1392 (2015).Google Scholar
Ribis, J., Lescoat, M-L., Zhong, S.Y., Mathon, M-H., and de Carlan, Y.: Influence of the low interfacial density energy on the coarsening resistivity of the nano-oxide particles in Ti-added ODS material. J. Nucl. Mater. 442, S101 (2013).Google Scholar
Bellon, P. and Enrique, R.A.: Interface stability and self-organization of precipitates under irradiation. Nucl. Instrum. Methods Phys. Res., Sect. B 178, 1 (2001).Google Scholar
Heinig, K.H., Müller, T., Schmidt, B., Strobel, M., and Möller, W.: Interfaces under irradiation: Growth and taming of nanostructures. Appl. Phys. A 77, 17 (2003).Google Scholar
Baldan, A.: Progress in Ostwald ripening theories, and their applications to nickel-base superalloys. J. Mater. Sci. 37, 2171 (2002).Google Scholar