Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-15T02:21:12.578Z Has data issue: false hasContentIssue false

Composites of polypyrrole and carbon black: Part III. Chemical synthesis and characterization

Published online by Cambridge University Press:  03 March 2011

Wesley A. Wampler
Affiliation:
Sid Richardson Carbon Co., Fort Worth Research Center, Fort Worth, Texas 76106
Krishnan Rajeshwar*
Affiliation:
Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065
R.G. Pethe
Affiliation:
Department of Physics, The University of Texas at Arlington, Arlington, Texas 76019-0065
R.C. Hyer
Affiliation:
Department of Physics, The University of Texas at Arlington, Arlington, Texas 76019-0065
S.C. Sharma
Affiliation:
Department of Physics, The University of Texas at Arlington, Arlington, Texas 76019-0065
*
a)Address correspondence to this author.
Get access

Abstract

A new class of molecular composites of carbon black and an electronically conducting polymer, namely polypyrrole, has been synthesized by chemically polymerizing pyrrole in an aqueous dispersion of carbon black. The carbon black content of these composites can be varied from ∼5% to ∼85% (by weight). The surface area and density of these composites were compared to corresponding mixtures of carbon black and polypyrrole. The influence of carbon black on the efficiency of polymerization of pyrrole is described. The effect of carbon black content on the electronic conductivity of the composite has been mapped, and compared with the corresponding behavior of a mixture of carbon black and polyvinylchloride. The influence of the parent black characteristics (porosity, void volume, surface area) on the electronic conductivity of the resultant composite has been probed by comparing the behavior of composites derived from six commercial and experimental blacks. The temperature dependence of the composites has been studied as a function of the carbon black content. Finally, the application of these new materials is an environmental remediation scenario is demonstrated for Cr(vi) as a model pollutant.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Wampler, W. A., Wei, C., and Rajeshwar, K., J. Electrochem. Soc. 141, L13 (1994).CrossRefGoogle Scholar
2Wampler, W. A., Wei, C., and Rajeshwar, K., Chem. Mater. 7, 585 (1995).CrossRefGoogle Scholar
3For example, Loutfy, R.O., Carbon 24, 127 (1986).CrossRefGoogle Scholar
4Santhanam, K. S. V. and Gupta, N., Trends in Polymer Science 1, 284 (1993).Google Scholar
5Jones, F. and Heywang, G., Electrochim. Acta 39, 1345 (1994).CrossRefGoogle Scholar
6Rudge, A., Raistrick, I., Gottesfeld, S., and Ferraris, J. P., Electrochim. Acta 39, 273 (1994).CrossRefGoogle Scholar
7Lyons, M. G. E., Analyst 119, 805 (1994).CrossRefGoogle Scholar
8Wang, E. and Liu, A., Anal. Chim. Acta 252, 53 (1991).CrossRefGoogle Scholar
9Ge, H., Zhang, J., and Wallace, G. G., Anal. Lett. 25, 429 (1992).CrossRefGoogle Scholar
10Ward, P. and Smyth, M. R., Talanta 40, 1131 (1993), and references therein.CrossRefGoogle Scholar
11Wei, C., German, S., Basak, S., and Rajeshwar, K., J. Electrochem. Soc. 140, L60 (1993).CrossRefGoogle Scholar
12Takeshita, K., Wernet, W., and Oyama, N., J. Electrochem. Soc. 141, 2004 (1994), and references therein.CrossRefGoogle Scholar
13Chandler, G. K. and Pletcher, D., J. Appl. Electrochem. 16, 62 (1986).CrossRefGoogle Scholar
14Leone, E., Marino, W., and Sharifker, B. R., J. Electrochem. Soc. 139, 438 (1992).CrossRefGoogle Scholar
15Bose, C. S. C. and Rajeshwar, K., J. Electroanal Chem. 333, 235 (1992).CrossRefGoogle Scholar
16Noun, R., J. Electrochem. Soc. 130, 2126 (1983).Google Scholar
17Kawai, K., Mihara, N., Kuwabata, S., and Yoneyama, H., J. Electrochem. Soc. 137, 1793 (1990).CrossRefGoogle Scholar
18Yoneyama, H. and Shoji, Y., J. Electrochem. Soc. 137, 3826 (1990).CrossRefGoogle Scholar
19Beck, F., Dahlhaus, M., and Zahedi, N., Electrochim. Acta 37, 1265 (1992).CrossRefGoogle Scholar
20Gill, M., Myktink, M., Ames, S. P., Edwards, J. L., Yeates, T., Moreland, P., and Mollett, C., J. Chem. Soc, Chem. Commun., 108 (1992).CrossRefGoogle Scholar
21Terrill, N. J., Crowley, T., Gill, M., and Armes, S. P., Langmuir 9, 2093 (1993).CrossRefGoogle Scholar
22Maeda, S. and Armes, S. P., J.Mater. Chem. 4, 935 (1994).CrossRefGoogle Scholar
23Maeda, S. and Armes, S. P., Chem. Mater. 7, 171 (1995).CrossRefGoogle Scholar
24Bose, C. S. C., Basak, S., and Rajeshwar, K., J. Electrochem. Soc. 139, L75 (1992).CrossRefGoogle Scholar
25Asavapiriyanout, S., Chandler, G. K., Gunawardena, G. A., and Pletcher, D., J. Electroanal. Chem. 177, 229 (1984).CrossRefGoogle Scholar
26Scharifker, B. R., Garcia-Pastoriza, E., and Manino, W., J. Electroanal. Chem. 300, 85 (1991).CrossRefGoogle Scholar
27Raymond, D. E. and Harrison, D. J., J. Electroanal. Chem. 355, 115 (1993).CrossRefGoogle Scholar
28Fermin, D. J. and Scharifker, B. R., J. Electroanal. Chem. 357, 273 (1993).CrossRefGoogle Scholar
29Scharifker, B. R. and Fermin, D. J., J. Electroanal. Chem. 365, 35 (1994).CrossRefGoogle Scholar
30Fabish, T. J. and Schleifer, D. E., Carbon 22, 19 (1984).CrossRefGoogle Scholar
31Carbon Black Science and Technology, 2nd ed., edited by Donnet, J. B., Basal, R. C., and Wang, M. J. (Marcel Dekker, New York, 1993).Google Scholar
32Švorčik, V., Rybka, V., Jankovskij, O., Hnatowicz, V., and Kvítek, J., J. Mater. Res. 9, 643 (1994).CrossRefGoogle Scholar
33Mott, N. F. and Davis, E. A., Electronic Processes in Noncrystalline Materials (Clarendon Press, Oxford, 1979).Google Scholar
34Travers, J. P., Audebert, P., and Bidan, G., Mol. Cryst. Liq. Cryst. 118, 149 (1985).CrossRefGoogle Scholar
35Sharma, S. C., Krishnamoorthy, S., Naidu, S. V., Eom, C. I., Krichene, S., and Reynolds, J. R., Phys. Rev. B 41, 5258 (1990).CrossRefGoogle Scholar
36Hyer, R. C., Pethe, R. G., Sharma, S. C., Pomerantz, M., Wang, J., and Elsenbaumer, R.C., unpublished.Google Scholar
37Sichel, E. K., Gittleman, J. I., and Sheng, P., in Carbon Black-Polymer Composites, edited by Sichel, E. K. (Marcel Dekker, New York and Basel, 1982), Chap. 2, pp. 5177.Google Scholar
38Sheng, P., Sichel, E. K., and Gittleman, J. I., Phys. Rev. Lett. 40, 1197 (1978).CrossRefGoogle Scholar
39Florence, T. M. and Batley, G. E., CRC Crit. Rev. Anal. Chem. 9, 219 (1980).CrossRefGoogle Scholar
40Morris, B. W., Hardisty, C. A., McCann, J. F., Kamp, G. J., and May, T. W., Atom. Spectrosc. 6, 149 (1985).Google Scholar
41Anderson, R. A., Polansky, M. M., Bryden, N. A., Patterson, K. Y., Vellion, C., and Glinsmann, W. H., J. Nutrit. 113, 276 (1975).CrossRefGoogle Scholar
42Schroeder, D. C. and Lee, G. F., Water, Air, Soil Pollut. 4, 355 (1981).CrossRefGoogle Scholar
43Mayer, L. M. and Schick, L. L., Environ. Sci. Technol. 15, 1482 (1981).CrossRefGoogle Scholar
44Ku, M. F. H., in Aquifer Contamination and Protection Project 8.3, International Hydrological Programme (UNESCO, Paris, 1989).Google Scholar
45Calder, L. M., in Chromium in the Natural and Human Environments (John Wiley-Interscience, New York, 1988).Google Scholar
46Kelber, R. J. and Helz, G. R., Environ. Sci. Technol. 26, 307 (1992), and references therein.Google Scholar
47Wampler, W. A., Basak, S., and Rajeshwar, K., unpublished.Google Scholar