Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T16:00:05.006Z Has data issue: false hasContentIssue false

Concrete reinforced with irradiated nylon fibers

Published online by Cambridge University Press:  01 February 2006

Gonzalo Martínez-Barrera*
Affiliation:
Laboratorio de Investigación y Desarrollo de Materiales Avanzados (LIDMA), Facultad de Química, Universidad Autónoma del Estado de México, Km.12 de la carretera Toluca-Atlacomulco, San Cayetano 50200, Mexico; and Laboratory of Advanced Polymers & Optimized Materials (LAPOM), Department of Materials Science and Engineering, University of North Texas,Denton, Texas 76203-5310
Carmina Menchaca-Campos
Affiliation:
Centro de Investigación en Ingeniería y Ciencias Aplicadas (CIICAp), Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62210, Mexico; and Center for the Study of Matter at Extreme Conditions (CeSMEC), Florida International University, Miami, Florida 33199
Susana Hernández-López
Affiliation:
Laboratorio de Investigación y Desarrollo de Materiales Avanzados (LIDMA), Facultad de Química, Universidad Autónoma del Estado de México, Km.12 de la carretera Toluca-Atlacomulco, San Cayetano 50200, Mexico
Enrique Vigueras-Santiago
Affiliation:
Laboratorio de Investigación y Desarrollo de Materiales Avanzados (LIDMA), Facultad de Química, Universidad Autónoma del Estado de México, Km.12 de la carretera Toluca-Atlacomulco, San Cayetano 50200, Mexico
Witold Brostow
Affiliation:
Laboratory of Advanced Polymers & Optimized Materials (LAPOM), Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203-5310
*
a)Address all correspondence to this author. e-mail: gonmar@uaemex.mx
Get access

Abstract

Polymeric fibers have been used since the 1980s for improvement of the concrete. However, high mechanical performance has been obtained at high cost and using complex technologies. At least two parameters are important here: dimensions and surface characteristics of the fibers. We have modified nylon 6,12 fiber surfaces by 5, 10, 50, and 100 kGy gamma irradiation dosages. Tensile strength of the irradiated fibers was determined and then the fibers mixed at 1.5%, 2.0%, and 2.5% in volume with Portland cement, gravel, sand, and water. The compressive strength of the fiber reinforced concrete (FRC) was evaluated and the results were compared with results for similar materials reported before. The highest values of the compressive strength of FRC are seen for fibers at 50 kGy and 2.0% in volume of fiber; the strength is 122.2 MPa, as compared to 35 MPa for simple concrete without fibers. We advance a mechanism by which the fiber structure can be affected by gamma irradiation resulting in the compressive strength improvement of the concrete.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Zheng, Z. and Feldman, D.: Synthetic fibre-reinforced concrete. Prog. Polym. Sci. 20, 185 (1995).CrossRefGoogle Scholar
2.Donald, A.M. Reinforcement of Plastics, in Performance of Plastics, edited by Brostow, W. (Hanser, Munich and Cincinnati, 2000), Chap. 13.Google Scholar
3.Muhua, T., Jinping, L. and Keru, W.: The toughness of nylon fiber mats laminated MDF cement composites. Cement Concrete Res. 24, 1185 (1994).CrossRefGoogle Scholar
4.Kurtz, S. and Balaguru, P.: Postcrack creep of polymeric fiber-reinforced concrete in flexure. Cement Concrete Res. 30, 183 (2000).CrossRefGoogle Scholar
5.Balaguru, P.N.: Contribution of fibers to crack reduction of cement composites during the initial and final setting period. ACI Mater. J. 91, 280 (1994).Google Scholar
6.Khajuria, A., Bohra, K. and Balaguru, P. Long-term durability of synthetic fibers in concrete, in Durability of Concrete, edited by Malhotra, V.M. (ACI 2 Detroit, MI, 1991), p. 851.Google Scholar
7.Beaudoin, J.J.: Handbook of Fiber-Reinforced Concrete: Principles, Properties, Developments and Applications (Noyes Publications, Park Ridge, NJ, 1990), p. 214.Google Scholar
8.Burillo, G., Clough, R.L., Czvikovszky, T., Guven, O., Moel, A. Le, Liu, W., Singh, A., Yang, J. and Zaharescu, T.: Polymer recycling: Potential application of radiation technology. Radiat. Phys. Chem. 64, 41 (2002).CrossRefGoogle Scholar
9.Menchaca, C., Alvarez-Castillo, A., Martínez-Barrera, G., López-Valdivia, H., Carrasco, H. and Castaño, V.M.: Mechanisms for the modification of nylon 6,12 by gamma irradiation. Int. J. Mater. Prod. Technol. 19, 521 (2003).CrossRefGoogle Scholar
10.Martínez-Barrera, G., Castaño, V.M. and Rodríguez, R.: Studies on the rubber phase stability in gamma irradiated polystyrene-SBR blends by using FTIR and Raman spectroscopy. Radiat. Phys. Chem. 69, 155 (2004).CrossRefGoogle Scholar
11.Menchaca, C., Alvarez-Castillo, A., López-Valdivia, H., Carrasco, H., Lara, H., Bosch, P. and Castaño, V.M.: Structural analysis of crystalline nylon 6,12 exposed to gamma radiation. Int. J. Polym. Mater. 51, 769 (2002).CrossRefGoogle Scholar
12.Timus, D.M., Cincu, C., Bradley, D.A., Craciun, G. and Mateescu, E.: Modification of some properties of polyamide-6 by electron beam induced grafting. Appl. Rad. Isotopes 53, 937 (2000).CrossRefGoogle ScholarPubMed
13.Zhang, X.C., Butler, M.F. and Cameron, R.E.: The ductile–brittle transition of irradiated isotactic polypropylene studied using simultaneous small angle x-ray scattering and tensile deformation. Polym. 41, 3797 (2000).CrossRefGoogle Scholar
14.Holland, B.J. and Hay, J.N.: Thermal degradation of nylon polymers. Polym. Int. 49, 943 (2000).3.0.CO;2-5>CrossRefGoogle Scholar
15.Thanki, P.N., Ramesh, C. and Singh, R.P.: Photo-irradiation induced morphological changes in nylon 66. Polym. 42, 535 (2001).CrossRefGoogle Scholar
16.Menchaca, C., Rejón, L., Alvarez-Castillo, A., Apátiga, M. and Castaño, V.M.: Structural analysis of crystalline nylon 6,12 exposed to gamma radiation. Int. J. Polym. Mater. 48, 135 (2000).CrossRefGoogle Scholar
17.Malek, M.A., Renreng, A. and Chong, Ch.S.: Mechanistic model for bond scission in a polymeric system by radiation. Radiat. Phys. Chem. 60, 603 (2001).CrossRefGoogle Scholar
18.Olivares, M., López-Valdivia, H., Vázquez-Polo, G., Mondragón, M.A., Lima, R., Martínez, E. and Castaño, V.M.: FT-Raman analysis of the effects of gamma radiation on nylon 6-12 filaments. Polym. Bull. 37, 221 (1996).CrossRefGoogle Scholar
19.Olivares, M., López-Valdivia, H., Vázquez-Polo, G., Carrasco, H., Alvarez-Castillo, A., Oliva, E. and Castaño, V.M.: Studies on the effects of γ-radiation on the mechanical properties of Nylon 6-12 fibers. Polym. Bull. 36, 629 (1996).CrossRefGoogle Scholar
20.Martínez-Barrera, G., Vigueras-Santiago, E., Hernández-López, S., Menchaca-Campos, C. and Brostow, W.: Mechanical improvement of concrete by irradiated polypropylene fibers. Polymer Eng. Sci. 45, 1426 (2005).CrossRefGoogle Scholar
21.Xenopoulos, A. and Wunderlich, B.: Thermodynamic properties of liquid and semicrystalline linear aliphatic polyamides J. Polym. Sci. Phys. 28, 2271 (1990).CrossRefGoogle Scholar
22.Martínez-Barrera, G., Brostow, W., Castaño, V.M. and Horta, J.: Gamma irradiation effects on impact strength and thermal properties of SBR-toughened polystyrene. Polimery 49, 9 (2004).Google Scholar
23.Martínez-Barrera, G., Menchaca, C., Pietkiewicz, D. and Brostow, W.: Polystyrene + styrene-butadiene blends: Mechanical and morphological properties. Mater. Sci. Medziagotyra 10, 166 (2004).Google Scholar
24.Brostow, W., Castaño, V.M. and Martínez-Barrera, G.: Gamma irradiation effect on polystyrene + SBR blends: Morphology and microhardness. Polimery 50, 27 (2005).CrossRefGoogle Scholar