Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T15:47:52.608Z Has data issue: false hasContentIssue false

Consolidation and crystallization of Si3N4/SiC nanocomposites from a poly(urea–silazane) ceramic precursor

Published online by Cambridge University Press:  31 January 2011

Julin Wan
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616
Matt J. Gasch
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616
Amiya K. Mukherjee
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616
Get access

Abstract

Controlled pyrolysis of polymer ceramic precursors provides a new way of obtaining silicon nitride ceramics with high creep resistance. In this study, crack-free bulk amorphous Si–N–C materials were produced by warm-pressing followed by pyrolysis or alternatively by prepyrolysis and binding followed by pyrolysis. Amorphous compacts were then heat-treated at different temperatures to promote crystallization. High-resolution electron microscopy revealed that, at about 1650 °C, silicon nitride/silicon carbide nanocomposites with a high degree crystallinity can be achieved with grain sizes of about 30 nm. Aside from heterogeneous crystallization, which is closely related to gaseous phase reactions that happen along outer or inner surfaces, homogenous crystallization is responsible for crystallization of the bulk material. Although a certain amount of amorphous Si–N–C usually remains in intergranular regions, clean boundaries free of amorphous interlayers can be observed between grains when they come into contact.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hampshire, S., in Materials Science and Technology: A Comprehensive Treatment, edited by Cahn, R.W., Haasen, P., and Kramer, E.J. (VCH, Weinheim, Germany, 1992), p. 120.Google Scholar
2.Menon, M.N., Fang, H.T., and Wu, D.C., J. Am. Ceram. Soc. 77, 1217 (1994).CrossRefGoogle Scholar
3.Ohji, T. and Yamauchi, Y., J. Am. Ceram. Soc. 76, 3105 (1993).Google Scholar
4.Yoon, S.Y., Akatsu, T., and Yasuda, E., J. Mater. Res. 11, 120 (1996).Google Scholar
5.Luecke, W.E., Weiderhorn, S.M., Hockey, B.J., Krause, R.F., and Long, G.G., J. Am. Ceram. Soc. 78, 2085 (1995).CrossRefGoogle Scholar
6.Du, H., Tressler, R.E., and Spear, K.E., J. Electrochem. Soc. 136, 3210 (1989).Google Scholar
7.Du, H., Tressler, R.E., Spear, K.E., and Patano, C.G., J. Electrochem. Soc. 136, 1527 (1989).Google Scholar
8.Riedel, R., in In Materials Science and Technology: A Compre-hensive Treatment, Processing of Ceramics, Part II, edited by Cahn, R.W., Haasen, P., and Kramer, E.J. (VCH, New York, 1996), p. 1.Google Scholar
9.Bill, J. and Aldinger, F., in Precursor-Derived Ceramics, edited by Bill, J., Wakai, F., and Aldinger, F. (Wiley-VCH, Weinheim, Germany, 1999), p. 33.Google Scholar
10.Okamura, K., Composites 18, 107 (1987).Google Scholar
11.Plovnick, R.H. and Pysher, D.J., Mater. Res. Bull. 35, 1453 (2000).Google Scholar
12.Riedel, R., Passing, G., Schönfelder, H., and Brook, R.J., Nature 355, 714 (1992).Google Scholar
13.Bill, J. and Aldinger, F., Adv. Mater. 7, 775 (1995).Google Scholar
14.Bill, J. and Aldinger, F., Z. Metall. 87, 829 (1996).Google Scholar
15.Riedel, R., Kienzle, A., Dressler, W., Ruwisch, L., Bill, J., and Aldinger, F., Nature 382, 796 (1996).CrossRefGoogle Scholar
16.Wan, J., Gasch, M.J., and Mukherjee, A.K., J. Mater. Res. 15, 1657 (2000).Google Scholar
17.Wan, J., Gasch, M.J., and Mukherjee, A.K., in Proceedings of International Conference on Engineering and Technological Sciences 2000, edited by Song, J. and Yin, R. (New World Press, Beijing, China, 2000), Session 3, Advanced Materials, Vol. 1, p. 276.Google Scholar
18.Mocaer, D., Pailer, R., Naslain, R., Richard, C., Pillot, J.P., Dunogues, J., Delverdier, O., and Monthioux, M., J. Mater. Sci. 28, 1993 (1993).Google Scholar
19.Monthioux, M.D., and Delverdier, O., J. Eur. Ceram. Soc. 16, 721 (1996).Google Scholar
20.Seifert, H.J., Lukas, H.L., and Aldinger, F., Phys. Chem. Chem. Phys. 102, 1309 (1998).Google Scholar
21.Kleebe, H.J., Suttor, D., and Ziegler, G., in Precursor-Derived Ceramics, edited by Bill, J., Wakai, F., and Aldinger, F. (Wiley-VCH, Weinheim, Germany, 1999), p. 113.Google Scholar
22.Bougerette, C., Le, P. Coustumer, Monthioux, M., and Vahlas, C., in 6th European Conference on Composite Materials, edited by Naslain, R., Lamon, J., and Doumeingts, D. (Woodhead Publishing Limited, Bordeaux, France, 1993), Vol.: High temperature ceramic matrix composites, p. 67.Google Scholar
23.Le Coustumer, P., Monthioux, M., and Oberlin, A., J. Eur. Ceram. Soc. 11, 95 (1993).Google Scholar
24.Shinoda, Y., Nagano, T., and Wakai, F., J. Am. Ceram. Soc. 82, 771 (1999).CrossRefGoogle Scholar
25.Shinoda, Y., Nagano, T., Gu, H., and Wakai, F., J. Am. Ceram. Soc. 82, 2916 (1999).Google Scholar
26.Ohiji, T., in Tailoring of Mechanical Properties of Si3N4 Ceramics, edited by Hoffmann, M.J. and Petzow, G. (Kluwer Academic Publishers, London, United Kingdom, 1994), p. 339.Google Scholar
27.Kleebe, H.J., Cinibulk, M.K., Tanaka, I., Bruley, J., Vetranno, J.S., and Rhule, M., in Tailoring of Mechanical Properties of Silicon Nitride Ceramics, edited by Hoffman, M.J. and Petzow, G. (Kluwer Academic Publishers, London, United Kingdom, 1994), p. 259.CrossRefGoogle Scholar
28.Jalowiecki, A., Bill, J., and Aldinger, F., Composites 27, 717 (1996).CrossRefGoogle Scholar
29.Galusek, D., Reschke, S., Riedel, R., Dressler, W., Sajgalik, P., Lences, Z., and Majling, J., J. Eur. Ceram. Soc. 19, 1911 (1999).Google Scholar