Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T15:58:33.476Z Has data issue: false hasContentIssue false

Consolidation of tungsten-coated copper composite powder

Published online by Cambridge University Press:  31 January 2011

L. P. Dorfman
Affiliation:
OSRAM SYLVANIA, Hawes Street, Towanda, Pennsylvania 18848
D. L. Houck
Affiliation:
OSRAM SYLVANIA, Hawes Street, Towanda, Pennsylvania 18848
M. J. Scheithauer
Affiliation:
OSRAM SYLVANIA, Hawes Street, Towanda, Pennsylvania 18848
Get access

Abstract

Powder metallurgy (P/M) methods have expanded in recent years to include net-shape fabrication of W–Cu components. Sintering of W–Cu compacts made from previous powders has led to low density and copper bleedout. This paper presents test results on the consolidation of a new powder containing particles composed of a tungsten-coated copper core. This powder effectively eliminates copper bleedout at sintering thereby making possible the net-shape manufacturing of parts. Sintered articles are characterized by microstructural homogeneity and properties comparable to those of infiltrated W–Cu composites.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Houck, D.L., Kopatz, N.E., Paliwal, M., and Sampath, S., U.S. Patent Nos. 5 439 638 (8 August 1995) and 5 897 962 (27 April 1999).Google Scholar
2.Jech, D.E. and Sepulveda, J.L., Advanced Copper-Refractory Metal Matrix Composites for Packaging Applications, Proceedings of the 1997 International Symposium on Microelectronics, Philadelphia, PA, October 12-16, 1997, (SPIE-International Society for Optical Engineering), pp. 9096.Google Scholar
3.Skorokhod, V.V., Powder Materials Based on Refractory Metals and Compounds (Technica, Kiev, Ukraine, 1982) (in Russian).Google Scholar
4.Kornilova, V.I., Kochakovskaya, L.D, Panichkina, V.V., Radchenko, P. Ya., and Skorokhod, V.V., Russ. J. Powder Metall. 3, 24 (1985).Google Scholar
5.Upadhyaya, A. and German, R.M., Int. J. Powder Metall. 34, 43 (1998).Google Scholar
6.Upadhyaya, A. and German, R.M., in Advances in Powder Metallurgy and Particulate Materials edited by McKoch, Robert A. and Webb, Richard; (Metal Powder Industries Federation, Princeton, NJ, 1997), Vol. 7, p. 41.Google Scholar
7.Rakovskii, V.S., Silaev, A.F., Khodkin, V.I., and Fatkullin, O.Kh., Powder Metallurgy of Refractory Metals and Alloys (in Russian). (“Metallurgy”, Moscow, 1974).Google Scholar
8.Dymchenko, V.A. and Popovich, A.P., Russ. J. Powder Metall. 5, 27 (1985).Google Scholar
9.Panichkina, V.V., Sirotiuk, M.M., and Skorokhod, V.V., Russ. J. Powder Metall.. 6, 27 (1982).Google Scholar
10.Skorokhod, V.V., Solonin, Yu.M., and Filippov, N.I., Russ. J. Powder Metall. 1, 19 (1984).Google Scholar
11.Johnson, J.L. and German, R.M., Int. J. Powder Metall. 30, 91 (1994).Google Scholar
12.Dorfman, L.P., Houck, D.L., Scheithauer, M.J., Dann, J.N., and Fassett, H.O., J. Mater. Res. 16, 1096 (2001).CrossRefGoogle Scholar
13.Dorfman, L.P., Houck, D.L., Scheithauer, M.J., and Frisk, T.A., J. Mater. Res. 17, 821 (2002).CrossRefGoogle Scholar
14.Lee, J-S., Kang, T-G., and Kim, T-H., J. Ishm – Korea (in Korean) 1, 135 (1994).Google Scholar
15.German, R.M., Hens, K.F., and Johnson, J.L., Int. J. Powder Metall. 30, 205 (1994).Google Scholar
16.Choba, A.V., Pasechnyi, V.V., Pilipovskii, Yu.L., and Pereselentseva, L.N., Russ. J. Powder Metall. 8, 50 (1983).Google Scholar
17.Mu, K., Kuang, Y., Xu, G., and Wei, A., in Proceedings of the 14th International Plansee Seminar, edited by Kneringer, G., Rodhammer, P., and Wilhartitz, P. (Plansee A. G., Reutte, Tizol, Austria, 1997), Vol. 7, p. 41.Google Scholar
18.Bose, A. and Sherman, A.J.P/M Sci. Technol. Briefs 1(1), 27 (1999).Google Scholar
19.Houck, D.L., Dorfman, L.P., and Paliwal, M., in Proceedings of the Seventh International Tungsten Symposium (International Tungsten Industry Association, London, United Kingdom, 1996), pp. 390409.Google Scholar
20.Houck, D.L., Dorfman, L.P., and Scheithauer, M.J., Applications for Advanced Tungsten/Copper Alloys, presented at the Eighth International Tungsten Symposium, Fukuoka, Japan, October 12–15, 1999 (Organized by the International Tungsten Industry Association, London, United Kingdom; enquiries@itia.org.uk).Google Scholar
21.Dorfman, L.P., Scheithauer, M.J., Houck, D.L., Paliwal, M., Myers, G.T., and Venskytis, F.J., U.S. Patent No. 6 103 392 (15 August 2000).Google Scholar
22.Lee, J-S., Kaysser, W.A., and Petzow, G., J. Mod. Dev. Powder Metall. 1, 489 (1984).Google Scholar
23.Paritskaya, L.N., Russ. J. Powder Metall.. 6, 28 (1984).Google Scholar
24.Troitskii, V.N., Rakhmatullina, A.Z., Berestenko, V.I., and Gurov, S.V., Russ. J. Powder Metall.. 1, 13 (1983).Google Scholar
25.Johnson, J.L. and German, R.M., Metall. Trans. A 24A, 2369 (1983).Google Scholar
26.Eremenko, V.N., Naidich, Yu.V., and Lavrinenko, I.A., Russ. J. Powder Metall 4, 72 (1962).Google Scholar
27.Kingery, W.D., J. Appl. Phys. 30, 301 (1959).CrossRefGoogle Scholar
28.German, R.M., Powder Injection Molding (Metal Powder Industries Federation, Princeton, NJ, 1990).Google Scholar