Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T05:48:08.562Z Has data issue: false hasContentIssue false

Contact formation of C60 to thin films of formamidinium tin iodide

Published online by Cambridge University Press:  25 September 2020

Jonas Horn
Affiliation:
Institute of Applied Physics, Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392Giessen, Germany Center for Materials Research (LaMa), Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392Giessen, Germany
Derck Schlettwein*
Affiliation:
Institute of Applied Physics, Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392Giessen, Germany Center for Materials Research (LaMa), Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392Giessen, Germany
*
a)Address all correspondence to this author. e-mail: schlettwein@uni-giessen.de
Get access

Abstract

Lead-free perovskite layers may provide a good alternative to the commonly used lead-halide-based perovskite absorber layers in photovoltaics. Energy level alignment of the active semiconductor with contact layers is a key factor in device performance. Kelvin probe force microscopy was used during vapor deposition of C60 onto formamidinium tin iodide to investigate contact formation with detailed local resolution of these materials that are significant for photovoltaic cells. Significant differences dependent on the growth rate of C60 were detected. Sufficiently high deposition rates were essential to reach compact C60 films needed for good contact. A space charge layer larger than 90 nm within the C60 layer was established without indication of interfacial dipoles. The present analysis gives a clear indication of a well-functioning contact of fullerenes to formamidinium tin iodide that is suitable for the use in photovoltaic devices provided that thin compact fullerene films are formed.

Type
Invited Paper
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dou, L., Yang, Y.M., You, J., Hong, Z., Chang, W-H., Li, G., and Yang, Y.: Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 5, 5404 (2014).CrossRefGoogle ScholarPubMed
Lin, Q., Armin, A., Burn, P.L., and Meredith, P.: Filterless narrowband visible photodetectors. Nat. Photonics 9, 687 (2015).CrossRefGoogle Scholar
Tan, Z-K., Moghaddam, R.S., Lai, M.L., Docampo, P., Higler, R., Deschler, F., Price, M., Sadhanala, A., Pazos, L.M., Credgington, D., Hanusch, F., Bein, T., Snaith, H.J., and Friend, R.H.: Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687 (2014).CrossRefGoogle ScholarPubMed
Abate, A.: Perovskite solar cells go lead free. Joule 1, 659 (2017).CrossRefGoogle Scholar
Hailegnaw, B., Kirmayer, S., Edri, E., Hodes, G., and Cahen, D.: Rain on methylammonium lead iodide based perovskites: Possible environmental effects of perovskite solar cells. J. Phys. Chem. Lett. 6, 1543 (2015).CrossRefGoogle ScholarPubMed
Serrano-Lujan, L., Espinosa, N., Larsen-Olsen, T.T., Abad, J., Urbina, A., and Krebs, F.C.: Tin- and lead-based perovskite solar cells under scrutiny. Adv. Energy Mater. 5, 1501119 (2015).CrossRefGoogle Scholar
Slavney, A.H., Hu, T., Lindenberg, A.M., and Karunadasa, H.I.: A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc. 138, 2138 (2016).CrossRefGoogle ScholarPubMed
Kentsch, R., Scholz, M., Horn, J., Schlettwein, D., Oum, K., and Lenzer, T.: Exciton dynamics and electron–phonon coupling affect the photovoltaic performance of the Cs2AgBiBr6 double perovskite. J. Phys. Chem. C 122, 25940 (2018).CrossRefGoogle Scholar
Noel, N.K., Stranks, S.D., Abate, A., Wehrenfennig, C., Guarnera, S., Haghighirad, A-A., Sadhanala, A., Eperon, G.E., Pathak, S.K., Johnston, M.B., Petrozza, A., Herz, L.M., and Snaith, H.J.: Lead-free organic-inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7, 3061 (2014).CrossRefGoogle Scholar
Ke, W. and Kanatzidis, M.G.: Prospects for low-toxicity lead-free perovskite solar cells. Nat. Commun. 10, 965 (2019).Google ScholarPubMed
He, X., Wu, T., Liu, X., Wang, Y., Meng, X., Wu, J., Noda, T., Yang, X., Moritomo, Y., Segawa, H., and Han, L.: Highly efficient tin perovskite solar cells achieved in a wide oxygen concentration range. J. Mater. Chem. A8, 2760 (2020).CrossRefGoogle Scholar
Jiang, X., Wang, F., Wei, Q., Li, H., Shang, Y., Zhou, W., Wang, C., Cheng, P., Chen, Q., Chen, L., and Ning, Z.: Ultra-high open-circuit voltage of tin perovskite solar cells via an electron transporting layer design. Nat. Commun. 11, 1245 (2020).CrossRefGoogle ScholarPubMed
Gupta, S., Cahen, D., and Hodes, G.: How SnF2 impacts the material properties of lead-free tin perovskites. J. Phys. Chem. C 122, 13926 (2018).CrossRefGoogle Scholar
Stoumpos, C.C., Malliakas, C.D., and Kanatzidis, M.G.: Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019 (2013).CrossRefGoogle ScholarPubMed
Nishikubo, R., Ishida, N., Katsuki, Y., Wakamiya, A., and Saeki, A.: Minute-scale degradation and shift of valence-band maxima of (CH3NH3)SnI3 and HC(NH2)2SnI3 perovskites upon air exposure. J. Phys. Chem. C 121, 19650 (2017).CrossRefGoogle Scholar
Liao, W., Zhao, D., Yu, Y., Grice, C.R., Wang, C., Cimaroli, A.J., Schulz, P., Meng, W., Zhu, K., Xiong, R-G., and Yan, Y.: Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22. Adv. Mater. 28, 9333 (2016).CrossRefGoogle ScholarPubMed
Xing, G., Kumar, M.H., Chong, W.K., Liu, X., Cai, Y., Ding, H., Asta, M., Grätzel, M., Mhaisalkar, S., Mathews, N., and Sum, T.C.: Solution-processed tin-based perovskite for near-infrared lasing. Adv. Mater. 28, 8191 (2016).CrossRefGoogle ScholarPubMed
Ma, L., Hao, F., Stoumpos, C.C., Phelan, B.T., Wasielewski, M.R., and Kanatzidis, M.G.: Carrier diffusion lengths of over 500 nm in lead-free perovskite CH3NH3SnI3 films. J. Am. Chem. Soc. 138, 14750 (2016).CrossRefGoogle ScholarPubMed
Lee, S.J., Shin, S.S., Kim, Y.C., Kim, D., Ahn, T.K., Noh, J.H., Seo, J., and Seok, S.I.: Fabrication of efficient formamidinium tin iodide perovskite solar cells through SnF(2)-Pyrazine complex. J. Am. Chem. Soc. 138, 3974 (2016).CrossRefGoogle Scholar
Kumar, M.H., Dharani, S., Leong, W.L., Boix, P.P., Prabhakar, R.R., Baikie, T., Shi, C., Ding, H., Ramesh, R., Asta, M., Graetzel, M., Mhaisalkar, S.G., and Mathews, N.: Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Adv. Mater. 26, 7122 (2014).CrossRefGoogle ScholarPubMed
Liao, Y., Liu, H., Zhou, W., Yang, D., Shang, Y., Shi, Z., Li, B., Jiang, X., Zhang, L., Quan, L.N., Quintero-Bermudez, R., Sutherland, B.R., Mi, Q., Sargent, E.H., and Ning, Z.: Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance. J. Am. Chem. Soc. 139, 6693 (2017).CrossRefGoogle ScholarPubMed
Shao, S., Liu, J., Portale, G., Fang, H-H., Blake, G.R., ten Brink, G.H., Koster, L.J.A., and Loi, M.A.: Highly Reproducible Sn-Based Hybrid Perovskite Solar Cells with 9% Efficiency. Adv. Energy Mater. 7, 1702019 (2017).Google Scholar
Horn, J., Scholz, M., Oum, K., Lenzer, T., and Schlettwein, D.: Influence of phenylethylammonium iodide as additive in the formamidinium tin iodide perovskite on interfacial characteristics and charge carrier dynamics. APL Mater. 7, 31112 (2019).CrossRefGoogle Scholar
Chen, K., Wu, P., Yang, W., Su, R., Luo, D., Yang, X., Tu, Y., Zhu, R., and Gong, Q.: Low-dimensional perovskite interlayer for highly efficient lead-free formamidinium tin iodide perovskite solar cells. Nano Energy 49, 411 (2018).Google Scholar
Yokoyama, T., Nishitani, Y., Miyamoto, Y., Kusumoto, S., Uchida, R., Matsui, T., Kawano, K., Sekiguchi, T., and Kaneko, Y.: Improving the open-circuit voltage of Sn-based perovskite solar cells by band alignment at the electron transport layer/perovskite layer interface. ACS Appl. Mater. Interfaces 12, 27131 (2020).CrossRefGoogle ScholarPubMed
Boehm, A.M., Liu, T., Park, S.M., Abtahi, A., and Graham, K.R.: Influence of surface ligands on energetics at FASnI3/C60 interfaces and their impact on photovoltaic performance. ACS Appl. Mater. Interfaces 12, 5209 (2020).CrossRefGoogle ScholarPubMed
Melitz, W., Shen, J., Kummel, A.C., and Lee, S.: Kelvin probe force microscopy and its application. Surf. Sci. Rep. 66, 1 (2011).CrossRefGoogle Scholar
Dymshits, A., Henning, A., Segev, G., Rosenwaks, Y., and Etgar, L.: The electronic structure of metal oxide/organo metal halide perovskite junctions in perovskite based solar cells. Sci. Rep. 5, 8704 (2015).CrossRefGoogle ScholarPubMed
Panigrahi, S., Jana, S., Calmeiro, T., Nunes, D., Martins, R., and Fortunato, E.: Imaging the anomalous charge distribution inside CsPbBr3 perovskite quantum dots sensitized solar cells. ACS Nano 11, 10214 (2017).CrossRefGoogle ScholarPubMed
Hermes, I.M., Hou, Y., Bergmann, V.W., Brabec, C.J., and Weber, S.A.L.: The interplay of contact layers: How the electron transport layer influences interfacial recombination and hole extraction in perovskite solar cells. J. Phys. Chem. Lett. 9, 6249 (2018).CrossRefGoogle ScholarPubMed
Jiang, C-S., Yang, M., Zhou, Y., To, B., Nanayakkara, S.U., Luther, J.M., Zhou, W., Berry, J.J., van de Lagemaat, J., Padture, N.P., Zhu, K., and Al-Jassim, M.M.: Carrier separation and transport in perovskite solar cells studied by nanometre-scale profiling of electrical potential. Nat. Commun. 6, 8397 (2015).CrossRefGoogle ScholarPubMed
Bergmann, V.W., Weber, S.A.L., Javier Ramos, F., Nazeeruddin, M.K., Grätzel, M., Li, D., Domanski, A.L., Lieberwirth, I., Ahmad, S., and Berger, R.: Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell. Nat. Commun. 5, 5001 (2014).CrossRefGoogle ScholarPubMed
Weber, S.A.L., Hermes, I.M., Turren-Cruz, S-H., Gort, C., Bergmann, V.W., Gilson, L., Hagfeldt, A., Graetzel, M., Tress, W., and Berger, R.: How the formation of interfacial charge causes hysteresis in perovskite solar cells. Energy Environ. Sci. 11, 2404 (2018).CrossRefGoogle Scholar
Yuan, Y., Li, T., Wang, Q., Xing, J., Gruverman, A., and Huang, J.: Anomalous photovoltaic effect in organic-inorganic hybrid perovskite solar cells. Sci. Adv. 3, e1602164 (2017).CrossRefGoogle ScholarPubMed
Birkhold, S.T., Precht, J.T., Giridharagopal, R., Eperon, G.E., Schmidt-Mende, L., and Ginger, D.S.: Direct observation and quantitative analysis of mobile Frenkel defects in metal halide perovskites using scanning Kelvin probe microscopy. J. Phys. Chem. C 122, 12633 (2018).CrossRefGoogle Scholar
Nguyen, B.P., Jung, H.R., Kim, J., and Jo, W.: Enhanced carrier transport over grain boundaries in lead-free CH3NH3Sn(I1-x Brx)3 (0≤x≤1) perovskite solar cells. Nanotechnology 30, 314005 (2019).CrossRefGoogle Scholar
Nguyen, B.P., Jung, H.R., Ryu, K.Y., Kim, K., and Jo, W.: Effects of organic cations on carrier transport at the interface between perovskites and electron transport layers in (FA,MA)SnI3 solar cells. J. Phys. Chem. C 123, 30833 (2019).CrossRefGoogle Scholar
Albrecht, G., Geis, C., Herr, J.M., Ruhl, J., Göttlich, R., and Schlettwein, D.: Electroluminescence and contact formation of 1-(pyridin-2-yl)-3-(quinolin-2-yl)imidazo[1,5-a]quinoline thin films. Org. Electron. 65, 321 (2019).CrossRefGoogle Scholar
Tao, S., Schmidt, I., Brocks, G., Jiang, J., Tranca, I., Meerholz, K., and Olthof, S.: Absolute energy level positions in tin- and lead-based halide perovskites. Nat. Commun. 10, 2560 (2019).CrossRefGoogle ScholarPubMed
Xi, J., Wu, Z., Jiao, B., Dong, H., Ran, C., Piao, C., Lei, T., Song, T-B., Ke, W., Yokoyama, T., Hou, X., and Kanatzidis, M.G.: Multichannel interdiffusion driven FASnI3 film formation using aqueous hybrid salt/polymer solutions toward flexible lead-free perovskite solar cells. Adv. Mater. 29, 1606964 (2017).Google ScholarPubMed
Ishii, H., Hayashi, N., Ito, E., Washizu, Y., Sugi, K., Kimura, Y., Niwano, M., Ouchi, Y., and Seki, K.: Kelvin probe study of band bending at organic semiconductor/metal interfaces: Examination of Fermi level alignment. Phys. Status Solidi A 201, 1075 (2004).CrossRefGoogle Scholar
Veenstra, S.C., Heeres, A., Hadziioannou, G., Sawatzky, G.A., and Jonkman, H.T.: On interface dipole layers between C60 and Ag or Au. Appl. Phys. A 75, 661 (2002).CrossRefGoogle Scholar
Yokoyama, T., Cao, D.H., Stoumpos, C.C., Song, T-B., Sato, Y., Aramaki, S., and Kanatzidis, M.G.: Overcoming short-circuit in lead-free CH3NH3SnI3 perovskite solar cells via kinetically controlled gas-solid reaction film fabrication process. J. Phys. Chem. Lett. 7, 776 (2016).CrossRefGoogle ScholarPubMed
Dang, Y., Zhou, Y., Liu, X., Ju, D., Xia, S., Xia, H., and Tao, X.: Formation of hybrid perovskite tin iodide single crystals by top-seeded solution growth. Angew. Chem. Int. Ed. 55, 3447 (2016).CrossRefGoogle ScholarPubMed
Liu, X., Yan, K., Tan, D., Liang, X., Zhang, H., and Huang, W.: Solvent engineering improves efficiency of lead-free tin-based hybrid perovskite solar cells beyond 9%. ACS Energy Lett. 3, 2701 (2018).CrossRefGoogle Scholar
Kamarudin, M.A., Hirotani, D., Wang, Z., Hamada, K., Nishimura, K., Shen, Q., Toyoda, T., Iikubo, S., Minemoto, T., Yoshino, K., and Hayase, S.: Suppression of charge carrier Recombination in lead-free tin halide perovskite via Lewis base post-treatment. J. Phys. Chem. Lett. 10, 5277 (2019).CrossRefGoogle ScholarPubMed
Liu, T., Chen, K., Hu, Q., Zhu, R., and Gong, Q.: Inverted perovskite solar cells: Progresses and perspectives. Adv. Energy Mater. 6, 1600457 (2016).CrossRefGoogle Scholar
Chen, D. and Sarid, D.: Growth of C60 films on silicon surfaces. Surf. Sci. 318, 74 (1994).CrossRefGoogle Scholar
Schulz, P., Cahen, D., and Kahn, A.: Halide perovskites: Is it all about the interfaces? Chem. Rev. 119, 3349 (2019).CrossRefGoogle ScholarPubMed
Shibuta, M., Yamagiwa, K., Eguchi, T., and Nakajima, A.: Imaging and spectromicroscopy of photocarrier electron dynamics in C60 fullerene thin films. Appl. Phys. Lett. 109, 203111 (2016).CrossRefGoogle Scholar
Colinge, J.P. and Colinge, C.A.: Physics of Semiconductor Devices (Kluwer Academic Publishers, Boston, MA, 2002).Google Scholar
Schulz, P., Whittaker-Brooks, L.L., MacLeod, B.A., Olson, D.C., Loo, Y-L., and Kahn, A.: Electronic level alignment in inverted organometal perovskite solar cells. Adv. Mater. Interfaces 2, 1400532 (2015).CrossRefGoogle Scholar
Saliba, M., Correa-Baena, J-P., Wolff, C.M., Stolterfoht, M., Phung, N., Albrecht, S., Neher, D., and Abate, A.: How to make over 20% efficient perovskite solar cells in regular (n–i–p) and inverted (p–i–n) architectures. Chem. Mater. 30, 4193 (2018).CrossRefGoogle Scholar
Gao, W., Ran, C., Li, J., Dong, H., Jiao, B., Zhang, L., Lan, X., Hou, X., and Wu, Z.: Robust stability of efficient lead-free formamidinium tin iodide perovskite solar cells realized by structural regulation. J. Phys. Chem. Lett. 9, 6999 (2018).CrossRefGoogle ScholarPubMed
Jokar, E., Chien, C-H., Tsai, C-M., Fathi, A., and Diau, E.W-G.: Robust tin-based perovskite solar cells with hybrid organic cations to attain efficiency approaching 10%. Adv. Mater. 31, 1804835 (2019).CrossRefGoogle ScholarPubMed
Fernández Garrillo, P.A., Grévin, B., Chevalier, N., and Borowik, Ł.: Calibrated work function mapping by Kelvin probe force microscopy. Rev. Sci. Instrum. 89, 43702 (2018).CrossRefGoogle ScholarPubMed
Sque, S.J., Jones, R., and Briddon, P.R.: The transfer doping of graphite and graphene. Phys. Status Solidi A204, 3078 (2007).CrossRefGoogle Scholar
Li, G., Mao, B., Lan, F., and Liu, L.: Practical aspects of single-pass scan Kelvin probe force microscopy. Rev. Sci. Instrum. 83, 113701 (2012).CrossRefGoogle ScholarPubMed
Supplementary material: File

Horn and Schlettwein supplementary material

Horn and Schlettwein supplementary material

Download Horn and Schlettwein supplementary material(File)
File 2.1 MB