Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-02T17:21:19.905Z Has data issue: false hasContentIssue false

Continuous hydrothermal synthesis and crystallization of magnetic oxide nanoparticles

Published online by Cambridge University Press:  31 January 2011

Linda J. Cote
Affiliation:
School of Chemical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
Amyn S. Teja
Affiliation:
School of Chemical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
Angus P. Wilkinson
Affiliation:
School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332
Z. John Zhang
Affiliation:
School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332
Get access

Abstract

The continuous hydrothermal synthesis of nanoparticles of two metal oxides (α–Fe2O3 and Co3O4) is described. Two variations of the technique were investigated, involving the precipitation reaction between a metal salt solution and a hydroxide solution at ambient conditions and at elevated temperatures. Elevated temperatures resulted in more uniform particles of α–Fe2O3 and Co3O4, although the actual sizes of the particles were apparently unaffected by the temperature. This behavior was attributed to the species present in solution and the solubilities of the cation(s), both of which were calculated via a thermodynamic model for the systems under study.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Chien, C.L., Granular Solids. Science and Technology of Nanostructured Magnetic Materials (Plenum Press, New York, 1991), p. 477.CrossRefGoogle Scholar
2.Bulte, J.W.M., Cuyper, M. de, Despres, D., and Frank, J.A., J. Magn. Mater. Magn. 194, 204 (1999).CrossRefGoogle Scholar
3.Lübbe, A.S., Bergemann, C., Brock, J., and McClure, D.G., J. Magn. Magn. Mater. 194, 149 (1999).CrossRefGoogle Scholar
4.Rondinone, A.J., Samia, A.C.S., and Zhang, Z.J., J. Phys. Chem. B 103, 6876 (1999).CrossRefGoogle Scholar
5.Siegel, R.W. and Hahn, H., in Current Trends in the Physics of Materials, edited by Yussouff, M. (World Scientific, Teaneck, NJ, 1987), pp. 403419.Google Scholar
6.Morales, M.P., Veintemillas-Verdaguer, S., and Serna, C.J., J. Mater. Res. 14, 3066 (1999).CrossRefGoogle Scholar
7.Pérez, J.A. López, Quintela, M.A. López, Mira, J., Rivas, J., and Charles, S.W., J. Phys. Chem. B 101, 8045 (1997).CrossRefGoogle Scholar
8.Jolivet, J.P., Chanéac, C., Prené, P., Vayssières, L., and Trone, E., J. Phys. IV 7, C1-573 (1997).Google Scholar
9.Niznansky, D., Rehspringer, J.L., and Drillon, M., IEEE Trans. Magn. 30, 821 (1994).CrossRefGoogle Scholar
10.Diamandescu, L., Mihăilă-Tărăbăşanu, D., Teodorescu, V., and Popescu-Pogrion, N., Mater. Lett. 37, 340 (1998).CrossRefGoogle Scholar
11.Matson, D.W., J. Linehan and M.E. Geusic, Part. Sci. Technol. 10, 143 (1992).CrossRefGoogle Scholar
12.Matson, D.W., Linehan, J.C., Bean, R.M., Brewer, T.D., Werpy, T.A., and Darab, J.G., U.S. Patent 5 652 192 (1997).Google Scholar
13.Adschiri, T., Kanazawa, K., and Arai, K., J. Am. Ceram. Soc. 75, 1019 (1992).CrossRefGoogle Scholar
14.Hakuta, Y., Onai, S., Terayama, H., Adschiri, T., and Arai, K., J. Mater. Sci. Lett. 17, 1211 (1998).CrossRefGoogle Scholar
15.Adschiri, T., Hakuta, Y., and Arai, K., Ind. Eng. Chem. Res. 39, 4901 (2000).CrossRefGoogle Scholar
16.Blesa, M.A. and Matijevic, E., Adv. Colloid Interface Sci. 29, 173 (1989).CrossRefGoogle Scholar
17.Larson, A.C. and Von, R.B. Dreele, Los Alamos National Laboratory Report LA-UR-86-748 (1987).Google Scholar
18.Birus, M., Kujundzic, N., and Pribanic, M., Prog. React. Kinet. 18, 171 (1993).Google Scholar
19.Cornell, R.M. and Schwertmann, U., The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses (VCH Publishers, New York, 1996).Google Scholar
20.Tanger, J.C. and Helgeson, H.C., Am. J. Sci. 288, 19 (1988).CrossRefGoogle Scholar
21.Kusik, C.L. and Meissner, H.P., AIChE Symp. Ser. No. 173, 74, 14 (1978).Google Scholar
22.Pitzer, K.S., J. Phys. Chem. 77, 268 (1973).CrossRefGoogle Scholar