Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T01:27:31.902Z Has data issue: false hasContentIssue false

Contribution to the analysis of the α/β interface in some titanium alloys

Published online by Cambridge University Press:  31 January 2011

C. Servant
Affiliation:
Laboratoire de Métallurgie Structurale, UA CNRS 1107, Bât. 410–413, Université de Paris Sud, 91405 Orsay Cedex, France
C. Quesne
Affiliation:
Laboratoire de Métallurgie Structurale, UA CNRS 1107, Bât. 410–413, Université de Paris Sud, 91405 Orsay Cedex, France
T. Baudin
Affiliation:
Laboratoire de Métallurgie Structurale, UA CNRS 1107, Bât. 410–413, Université de Paris Sud, 91405 Orsay Cedex, France
R. Penelle
Affiliation:
Laboratoire de Métallurgie Structurale, UA CNRS 1107, Bât. 410–413, Université de Paris Sud, 91405 Orsay Cedex, France
Get access

Abstract

In (α + β) titanium alloys, the interface between the α and β phases has been widely studied, and many conflicting results have been published concerning the formation of an interface phase having an hcp or fcc crystalline structure. Several authors consider that this phase is an artifact and consists of a titanium hydride formed during thin foil preparation for TEM examination. This paper reports examinations by TEM and STEM of heat-treated Ti–6Al–4V alloy and two titanium molybdenum aluminides. The formation of an α/β interface phase is discussed as a function of composition heat-treatment and thin foil preparations. Particularly, for Ti–6Al–4V in a nonequilibrium state, a strong concentration gradient was revealed in the α/β interface, and a metastable interface phase enriched in beta-stabilizers with an fcc structure has been clearly characterized.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Banerjee, D., Shelton, C. G., Ralph, B., and Williams, J. C., Acta Metall. 36 (1), pp. 125141 (1988).CrossRefGoogle Scholar
2Rhodes, C. G. and Williams, J. C., Metall. Trans. A 6A, 1670 (1975).CrossRefGoogle Scholar
3Rhodes, C. G. and Williams, J. C., Metall. Trans. A 6A, 2103 (1975).CrossRefGoogle Scholar
4Manoubi, T., Servant, C., and Lacombe, P., Proceedings des 5èmes Journées d'Etude sur le Titane à Nantes, 349–364 (1978).Google Scholar
5Margolin, H., Levine, E., and Young, M., Metall. Trans. A 8A, 373 (1977).CrossRefGoogle Scholar
6Rhodes, C. G. and Paton, N. E., Metall. Trans. A 10A, 209 (1979).CrossRefGoogle Scholar
7Barbier, F., Servant, C., Quesne, C., and Lacombe, P., C. R. Acad. Sc. Paris 292, 12631267 (1981).Google Scholar
8Chenu, F., Servant, C., Quesne, C., and Lacombe, P., Titanium 80 Science and Technology, Proc. 4th Int. Conf. on Titanium, Kyoto, Japan, 729733 (1980).Google Scholar
9Naka, S. and Lasalmonie, A., Trans. Jpn. Institute of Metals 22 (6), 410414 (1981).Google Scholar
10Paton, N. E. and Fraser, H. L., Proc. 6th World Conf. on Titanium, edited by Les Editions de Physique, part III, 1469–1479 (1988).Google Scholar
11Campagnac, M. H., These de Doctorat en Sciences, Université Pierre et Marie Curie (1988).Google Scholar
12Ye, T. T. and Ling, H., Scripta Metal. 23, 16151620 (1989).CrossRefGoogle Scholar
13Ye, T. T. and Ling, H., Scripta Metall. 23, 17551760 (1989).CrossRefGoogle Scholar
14Tixier, R., Microanalyse X sur échantillons minces, microanalyse et microscopie electronique à balayage, Les Editions de Physique, Orsay, 433448 (1978).Google Scholar
15Zalusec, N. J., Introduction to Analytical Microscopy, edited by Hren, J. J., Goldstein, J. I., and Joy, D. C. (Plenum Press, New York and London, 1979), pp. 121167.CrossRefGoogle Scholar
16Blackburn, M. J. and Williams, J. C., Trans. AIME 239, 287 (1967).Google Scholar
17Tricot, R., Materiaux et Techniques, n° 12, 47–67 (1988).CrossRefGoogle Scholar
18Djanarthany, S., Servant, C., and Penelle, R., J. Mater. Res. 6, 969 (1991).CrossRefGoogle Scholar
19Pearson, W. B., A Handbook of Lattice Spacings and Structures of Metals and Alloys (Pergamon Press, London, 1958).Google Scholar
20Wei, H., Liu, G., Lai, Z., Diao, F., and Xie, L., Proc. 5th Int. Conf. on Titanium and Technology, Munich, 3, 20152021 (1984).Google Scholar
21Nabarro, F. R., Dislocations in Solids (North Holland, Amsterdam, 19791981), Vol. I–IV, pp. 12301243.Google Scholar
22Sastry, S. M. L. and Lipsitt, H. A., in High-Temperature Ordered Intermetallic Alloys, edited by Koch, C. C., Liu, C. T., and Stoloff, N. S. (Mater. Res. Soc. Symp. Proc. 39, Pittsburgh, PA, 1984), p. 1.Google Scholar
23Kurdjumov, G. and Sachs, G., Z. Physik 64, 325 (1930).CrossRefGoogle Scholar
24Servant, C., Thèse de Doctorat ès Sciences Physiques, Université de Paris Sud (1972).Google Scholar
25Bouzid, N., Thèse de Doctorat en Sciences, Université de Paris Sud (1987); N. Bouzid, C. Servant, and G. Cizeron, Acta Metall. 36 (6), pp. 1527–1536 (1988).Google Scholar
26Chenu-Barbier, F., Quesne, C., Servant, C., and Lacombe, P., J. of the Less-Common Metals 79, 7595 (1981).CrossRefGoogle Scholar
27 Aerospatiale, Air-Forge and Turbomeca Industries, private communication in the Groupement Scientifique Titane context.Google Scholar