Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T00:46:09.028Z Has data issue: false hasContentIssue false

Control growth of PbS quantum dots doped sono-ormosil

Published online by Cambridge University Press:  31 January 2011

R. Erce-Montilla
Affiliation:
Dpto. Física de la Materia Condensada, Universidad de Cádiz, Aptdo. 40, 11510 Puerto, Real (Cadiz), Spain
M. PiÑero
Affiliation:
Dpto. Física Aplicado, Univeridad de Cádiz, Aptdo. 40, 11510 Puerto, Real (Cadiz), Spain
N.de la Rosa-Fox
Affiliation:
Dpto. Cristalografía y Mineralogía, Estratigrafía, Geodinámica y Petrología y Geoquímica, Universidad de Cádiz, Aptdo. 40, 11510 Puerto, Real (Cadiz), Spain
A. Santos
Affiliation:
Dpto. Cristalografía y Mineralogía, Estratigrafía, Geodinámica y Petrología y Geoquímica, Universidad de Cádiz, Aptdo. 40, 11510 Puerto, Real (Cadiz), Spain
L. Esquivias
Affiliation:
Dpto. Física de la Materia Condensada, Universidad de Cá;diz, Aptdo. 40, 11510 Puerto, Real (Cadiz), Spain
Get access

Abstract

Semiconductor PbS quantum dots doped-SiO2 organically modified silicate (ormosil) gels were synthesised via sol-gel by using high-power ultrasounds (sonogel). The effect of PbS crystal concentration and the addition of (3-mercaptopropyl)trimethoxysilane acting as surface capping agent (SCA) were investigated. By adjustment of the SCA to lead ratio, PbS nanoparticles of different sizes and morphologies were obtained. Textural parameters were calculated from N2 physisorption isotherms. The PbS galena phase was identified by x-ray diffraction, the crystal size by high-resolution transmission electron microscopy, and the exciton confinement by ultraviolet–visible–near-infrared spectrophotometry. Crystallite mean sizes of spheres and cubes ranging from 6.5 to 10.5 nm and needles 7-nm wide and 15–20 nm long, for different PbS and SCA concentrations, were obtained. These results differ from those predicted by the effective mass approximation corroborating the band gap modifications in the smallest nanocrystals. The method allows the control of the crystal size and improves the stabilization of the PbS nanocrystals.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Woggon, U., in Optical Properties of Semiconductors Quantum Dots (Springer-Verlag, STMP Vol. 136, Berlin, Germany, 1997), Chap. 1 and 2.Google Scholar
2Peyghambarian, N., Koch, S., and Mysyrowicz, A., in Introduction to Semiconductor Optics (Prentice-Hall, Upper Saddle River, NJ, 1993), pp. 245253.Google Scholar
3Lipovskii, A., Kolobkova, E., Petrikov, V., Kang, I., Olkhovets, A., Krauss, T., Thomas, M., Silcox, J., Wise, F., Shen, Q., and Kycia, S., Appl. Phys. Lett. 71, 3406 (1997).CrossRefGoogle Scholar
4Borrelli, N.F. and Smith, D.W., J. Non-Cryst. Solids 180, 25 (1994).CrossRefGoogle Scholar
5Mukherjee, M., Datta, A., and Chakravorty, D., J. Mater. Res. 12, 2507 (1997).CrossRefGoogle Scholar
6Monte, F. del, Xu, Y., and Mckenzie, J.D., J. Sol-Gel Sci. Technol. 17, 37 (2000).CrossRefGoogle Scholar
7Gallardo, S., M. Gutiérrez, Henglein, A., and Janata, E., Ber. Bunsen-Ges. Phys. Chem. 93, 1080 (1989).CrossRefGoogle Scholar
8Guglielmi, M., Martucci, A., Fick, J., and Vitrant, G., J. Sol-Gel Sci. Technol. 11, 229 (1998).CrossRefGoogle Scholar
9Martucci, A., Innocenzi, P., Fick, J., and Mackenzie, J.D., J. Non-Cryst. Solids 244, 55 (1999).CrossRefGoogle Scholar
10Spanhel, L., Arpac, E., and Schmidt, H., J. Non-Cryst. Sol. 147&148, 657 (1992).CrossRefGoogle Scholar
11Parvathy, N.N., Pajonk, G.M., and Venkateswara, A., J. Cryst. Growth 179, 249 (1997).CrossRefGoogle Scholar
12Parvathy, N.N., Pajonk, G.M., and Venkateswara, A., Mat. Res. Bull., 32, 397 (1997).CrossRefGoogle Scholar
13Martucci, A., Guglielmi, M., and Urabe, K., J. Sol-Gel. Sci. Technol. 11, 105 (1998).CrossRefGoogle Scholar
14Martucci, A., Fick, J., Scell, J., Battaglin, G., and Guglielmi, M., J. Appl. Phys. 86, 79 (1999).CrossRefGoogle Scholar
15Guglielmi, M., Martucci, A., Menegazzo, E., Righini, G.C., Pelli, S., Fick, J., and Vitrant, G., J. Sol-Gel Sci. Technol. 8, 1017 (1997).Google Scholar
16Lin, H., Bescher, E., Mackenzie, J.D., Dai, H., and Stafsudd, O.M., J. Mater. Sci. 27, 5523 (1992).CrossRefGoogle Scholar
17Guerreiro, P.T., Ten, S., Borrelli, N.F., Butty, J., Jabbour, G.E., and Peyghambariam, N., Appl. Phys. Lett. 71, 1595 (1997).CrossRefGoogle Scholar
18Rosa-Fox, N. del, Esquivias, L., and Zarzycki, J., J. Mater. Sci. Lett. 10, 1237 (1991).Google Scholar
19Rosa-Fox, N. del, Esquivias, L., Craievich, A.F., and Zarzycki, J., J. Non-Cryst. Solids 121, 211 (1990).CrossRefGoogle Scholar
20Blanco, E., Esquivias, L., Litran, R., Piñero, M., Ramirez-del-Solar, M., and de la Rosa-Fox, N., Appl. Organomet. Chem. 13, 399 (1999).3.0.CO;2-A>CrossRefGoogle Scholar
21Morita, K., Hu, Y., and Mackenzie, J.D., in Better Ceramics Through Chemistry V, edited by Hampden-Smith, M.J., Kemplerer, W.G., and Brinker, C.J. (Mater. Res. Soc. Symp. Proc. 271, Pittsburgh, PA (1992), p. 693.Google Scholar
22de la Rosa-Fox, N., Esquivias, L., and Zarzycki, J., Diffuss. Def. Data 53–54, 363 (1987).CrossRefGoogle Scholar
23Mckenzie, J.D., J. Sol-Gel Sci. Technol. 2, 81 (1994).CrossRefGoogle Scholar
24Morita, K., Hu, Y., and Mackenzie, J., J. Sol-Gel Sci. Technol. 3, 109 (1994).CrossRefGoogle Scholar
25Brunauer, S., Emmet, P.H., and Teller, E., J. Am. Chem. Soc. 60, 309 (1938).CrossRefGoogle Scholar
26Horvath, G. and Kawazoe, K., J. Chem. Eng. Jpn. 16, 470 (1983).CrossRefGoogle Scholar
27Ricolleau, C., Gandais, M., Gacoin, T., and Boilot, J.P., J. Cryst. Growth 166, 769 (1996).CrossRefGoogle Scholar
28Schneider, T., Haase, M., Kornowski, A., Naused, S., and Weller, H., Ber. Bunsen-Ges. Phys. Chem. 101, 1654 (1997).CrossRefGoogle Scholar
29Efros, AI.L. and Efros, A.L., Sov. Phys. Semicond. 16, 772 (1982).Google Scholar
30Wang, Y., Suna, A., Mahler, W., and Kasowski, R., J. Chem. Phys. 87, 7315 (1987).CrossRefGoogle Scholar
31Nogami, M., Nagasaka, K., and Kotani, K., J. Non-Cryst. Solids 126, 87 (1992).CrossRefGoogle Scholar
32Thielsh, R., Böhme, T., Reiche, R., D. Shläfer, Bauer, H-D., and Böttcher, H., Nanostruct. Mater. 10, 131 (1998).CrossRefGoogle Scholar