Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T01:22:09.889Z Has data issue: false hasContentIssue false

Control of iron nitride formation by a high magnetic field

Published online by Cambridge University Press:  31 January 2011

W.P. Tong*
Affiliation:
Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110004, China
H. Zhang
Affiliation:
Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110004, China
J. Sun
Affiliation:
Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110004, China
L. Zuo
Affiliation:
Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110004, China
J.C. He
Affiliation:
Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110004, China
J. Lu
Affiliation:
Department of Mechanical Engineering, the Hong Kong Polytechnic University, Hong Kong, China
*
a)Address all correspondence to this author. e-mail: wptong@mail.neu.edu.cn
Get access

Abstract

The influence of high magnetic field on nitriding behavior was investigated in a mixture of NH3 and H2. It was found that high magnetic field could shift the equilibrium of nitriding reaction; this proved that the critical nitrogen potential to form γ′-Fe4N and ε-Fe3N phase was evidently enhanced compared with conventional nitriding. This research provides a new approach for a selective nitriding process.

Type
Materials Communications
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bell, T.: Source Book on Nitriding (ASM, Metals Park, OH 1977)266Google Scholar
2.Tong, W.P., Tao, N.R., Wang, Z.B., Lu, J., Lu, K.: Nitriding iron at lower temperatures. Science 299, 686 (2003)CrossRefGoogle ScholarPubMed
3.Somers, M.A.J., Mittemeijer, E.J.: Layer-growth kinetics on gaseous nitriding of pure iron: Evaluation of diffusion coefficients for nitrogen in iron nitrides. Metall. Mater. Trans. A 26, 57 (1995)CrossRefGoogle Scholar
4.Ferkel, H., Glatzer, M., Estrin, Y., Valiev, R.Z., Blawert, C., Mordike, B.L.: RF plasma nitriding of severely deformed iron-based alloys. Mater. Sci. Eng., A 348, 100 (2003)CrossRefGoogle Scholar
5.Lehrer, E.: On the iron-hydrogen-ammonia equilibrium. Zeitschrift für Elektrochemie 36, 383 (1930)Google Scholar
6.Kooi, B.J., Somers, M.A.J., Mittemeijer, E.J.: An evaluation of the Fe–N phase diagram considering long-range order of N atoms in γ′-Fe4N1–x and ε-Fe2N1–z. Metall. Mater. Trans. A 27, 1063 (1996)CrossRefGoogle Scholar
7.Tong, W.P., Tao, N.R., Wang, Z.B., Zhang, H.W., Lu, J., Lu, K.: The formation of ε-Fe3N phase in a nanocrystalline Fe. Scr. Mater. 50, 647 (2004)CrossRefGoogle Scholar
8.Bell, T., Birch, B.J., Korotchenko, V., Evans, S.P.: Controlled nitriding in ammonia-hydrogen mixtures, Heat Treatment '73: Book No. 163 (The Metals Society, London, UK 1973)51Google Scholar
9.Sun, Y., Bell, T.: Computer prediction of threshold nitriding potential curves. Heat Treat. Met. 24, 43 (1997)Google Scholar
10.Joo, H.D., Kim, S.U., Shin, N.S., Koo, Y.M.: An effect of high magnetic field on phase transformation in Fe–C system. Mater. Lett. 43, 225 (2000)CrossRefGoogle Scholar
11.Jaramillo, R.A., Babu, S.S., Ludtka, G.M., Kisner, R.A., Wilgen, J.B., Mackiewicz-Ludtka, G., Nicholson, D.M.: Effect of 30 Tesla magnetic field on transformations in a novel bainitic steel. Scr. Mater. 52, 461 (2004)CrossRefGoogle Scholar
12.Zhang, Y.D., Gey, N., He, C.S., Zhao, X., Zuo, L., Esling, C.: High temperature tempering behaviors in a structural steel under high magnetic field. Acta Mater. 52, 3467 (2004)CrossRefGoogle Scholar
13.Hillert, M., Jarl, M.: A thermodynamic analysis of the iron-nitrogen system. Metall. Trans. A 6, 553 (1975)CrossRefGoogle Scholar
14.Guggenheim, E.A.: Thermodynamics 6th ed (North Holland, Amsterdam, The Netherlands 1977)Google Scholar
15.Cyrot, M., Décorps, M., Dieny, B.: Magnétisme (Presses Universitaires de Grenoble, Grenoble, France 1999)Google Scholar
16.Crangle, J.: The Magnetic Properties of Solids (Edward Arnold, London, UK 1977)Google Scholar
17.Leineweber, A., Jacobs, H., Huning, F., Lueken, H., Schilder, H., Kockelmann, W.: Fe3N: Magnetic structure, magnetization and temperature dependent disorder of nitrogen. J. Alloys Compd. 288, 79 (1999)CrossRefGoogle Scholar
18.Chen, S.K., Jin, S., Kammlott, G.W., Tiefel, T.H., Johnson, D.W. Jr., Gyorgy, E.M.: Synthesis and magnetic properties of Fe4N and (Fe, Ni)4N sheets. J. Magn. Magn. Mater. 110, 65 (1992)CrossRefGoogle Scholar
19.Zhang, Y.D., Zhao, X., Bozzolo, N., He, C.S., Zuo, L., Esling, C.: Low temperature tempering of a medium carbon steel in high magnetic field. ISIJ Int. 45, 913 (2005)CrossRefGoogle Scholar
20.Xie, W.H., Xue, D.S., Li, F.S.: Local coordination influence on the magnetic properties of iron nitride. J. Phys. Condens. Matter 12, 9061 (2000)CrossRefGoogle Scholar
21.Faraoun, H.I., Zhang, Y.D., Esling, C., Aourag, H.: Crystalline, electronic, and magnetic structures of θ-Fe3C, χ-Fe5C2, and η-Fe2C from first principle calculation. J. Appl. Phys. 99, 093508 (2006)CrossRefGoogle Scholar