Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-01T06:11:19.998Z Has data issue: false hasContentIssue false

Control of stoichiometry, microstructure, and mechanical properties in SiC coatings produced by fluidized bed chemical vapor deposition

Published online by Cambridge University Press:  31 January 2011

E. López-Honorato
Affiliation:
Materials Science Centre, School of Materials, The University of Manchester, Manchester M1 7HS, United Kingdom
P.J. Meadows
Affiliation:
Materials Science Centre, School of Materials, The University of Manchester, Manchester M1 7HS, United Kingdom
J. Tan
Affiliation:
Materials Science Centre, School of Materials, The University of Manchester, Manchester M1 7HS, United Kingdom
P. Xiao*
Affiliation:
Materials Science Centre, School of Materials, The University of Manchester, Manchester M1 7HS, United Kingdom
*
a)Address all correspondence to this author. e-mail: Ping.xiao@manchester.ac.uk
Get access

Abstract

Stoichiometric silicon carbide coatings the same as those used in the formation of TRISO (TRistructural ISOtropic) fuel particles were produced by the decomposition of methyltrichlorosilane in hydrogen. Fluidized bed chemical vapor deposition at around 1500 °C, produced SiC with a Young’s modulus of 362 to 399 GPa. In this paper we demonstrate the deposition of stoichiometric silicon carbide coatings with refined microstructure (grain size between 0.4 and 0.8 μm) and enhanced mechanical properties (Young’s modulus of 448 GPa and hardness of 42 GPa) at 1300 °C by the addition of propene. The addition of ethyne, however, had little effect on the deposition of silicon carbide. The effect of deposition temperature and precursor concentration were correlated to changes in the type of molecules participating in the deposition mechanism.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Lohnert, G.H., Nabielek, H.Schenk, W.: The fuel element of the HTR-module, a prerequisite of an inherently safe reactor. Nucl. Eng. Des. 109, 257 1988CrossRefGoogle Scholar
2Nabielek, H., Kaiser, G., Huschka, H., Ragoss, H., Wimmers, M.Theymann, W.: Fuel for pebble-bed HTRs. Nucl. Eng. Des. 78, 155 1984CrossRefGoogle Scholar
3Lefevre, R.L.R.Price, M.S.T.: Coated nuclear fuel particles: The coating process and its model. Nucl. Technol. 35, 263 1977CrossRefGoogle Scholar
4Price, R.J.: Properties of silicon carbide for nuclear fuel particle coatings. Nucl. Technol. 35, 320 1977CrossRefGoogle Scholar
5Petti, D.A., Buongiorno, J., Maki, J.T., Hobbins, R.R.Miller, G.K.: Key differences in the fabrication, irradiation and high temperature accident testing of US and German TRISO-coated particle fuel, and their implications on fuel performance. Nucl. Eng. Des. 222, 281 2003CrossRefGoogle Scholar
6Federer, J.I.: Parametric study of silicon carbide coatings deposited in a fluidized bed. Thin Solid Films 40, 89 1977CrossRefGoogle Scholar
7Minato, K.Fukuda, K.: Chemical vapor deposition of silicon carbide for coated fuel particles. J. Nucl. Mater. 149, 233 1987CrossRefGoogle Scholar
8Xu, S.J., Zhou, J.G., Yang, B.Zhang, B.Z.: Effect of deposition temperature on the properties of pyrolytic SiC. J. Nucl. Mater. 224, 12 1995CrossRefGoogle Scholar
9Minato, K.Fukuda, K.: Structure of chemical vapor deposited silicon carbide for coated fuel particles. J. Mater. Sci. 23, 699 1988CrossRefGoogle Scholar
10Schlichting, J.: Chemical vapor deposition of silicon carbide. Powder Metall. Int. 12, 141 1980Google Scholar
11Chin, J., Gantzel, P.K.Hudson, R.G.: The structure of chemical vapor deposited silicon carbide. Thin Solid Films 40, 57 1977CrossRefGoogle Scholar
12Helary, D., Dunge, O., Bourrat, X., Jouneau, P.H.Cellier, F.: EBSD investigation of SiC for HTR fuel particles. J. Nucl. Mater. 350, 332 2006CrossRefGoogle Scholar
13Bellan, C.Dhers, J.: Evaluation of Young modulus of CVD coatings by different techniques. Thin Solid Films 469–470, 214 2004CrossRefGoogle Scholar
14Park, K.H., Park, J.Y., Kim, W., Lee, Y.W.Chang, J.H.: Porosity evaluation of pyrolytic carbon in TRISO-coated fuel particles by depth-sensing indentation method. Third International Topical Meeting on High Temperature Reactor Technology (2006, Johannesburg, South Africa),Google Scholar
15Zhao, X., Langford, J., Tan, J.Xiao, P.: Mechanical properties of SiC coatings on spherical particles measured using the micro-beam method. Scripta Mater. 2008 DOI: 10.1016/j.scriptamat.2008.02.022CrossRefGoogle Scholar
16Fukuda, K., Ogawa, T., Hayashi, K., Shiozawa, S., Tsuruta, H.Tanaka, I.: Research and development of HTTR coated particle fuel. J. Nucl. Sci. Technol. 26, 570 1991CrossRefGoogle Scholar
17Miller, G.K.Wadsworth, D.C.: Treating asphericity in fuel particle pressure vessel modeling. J. Nucl. Mater. 211, 57 1994CrossRefGoogle Scholar
18Miller, G.K.Bennett, R.G.: Analytical solution for stresses in TRISO-coated particles. J. Nucl. Mater. 206, 35 1993CrossRefGoogle Scholar
19Minato, K., Kikuchi, H., Fukuda, K., Suzuki, N., Tomimoto, H., Kitamura, N.Kaneko, M.: Internal flaws in the silicon carbide coating of fuel particles for high-temperature gas-cooled reactors. Nucl. Technol. 106, 342 1994CrossRefGoogle Scholar
20Johnson, A.D., Perrin, J., Mucha, J.A.Ibbotson, D.E.: Kinetics of SiC CVD: Surface decomposition of silacyclobutane and methylsilane. J. Phys. Chem. 97, 12937 1993CrossRefGoogle Scholar
21Weigang, G.Huttinger, K.J.: CVD of SiC from methyltrichlorosilane. Part I: Deposition rates. Chem. Vapor Deposit. 7, 167 2001Google Scholar
22Weigang, G.Huttinger, K.J.: CVD of SiC from methyltrichlorosilane. Part II: Composition of the gas phase and the deposit. Chem. Vap. Deposition 7, 173 2001Google Scholar
23Loumagne, F., Langlais, F.Naslain, R.: Reactional mechanism of the chemical vapor deposition of SiC-based ceramics from CH3SiCl3/H2 gas precursor. J. Cryst. Growth 155, 205 1995CrossRefGoogle Scholar
24Mousavipour, S.H., Saheb, V.Ramezani, S.: Kinetics and mechanism of pyrolysis of methyltrichlorosilane. J. Phys. Chem. A 108, 1946 2004CrossRefGoogle Scholar
25Stinespring, C.D.Wormhoudt, J.C.: Gas phase kinetics analysis and implications for silicon carbide chemical vapor deposition. J. Cryst. Growth 87, 481 1988CrossRefGoogle Scholar
26Ganz, M., Dorval, N., Lefebvre, M., Péalat, M., Loumagne, F.Langlais, F.: In situ optical analysis of the gas phase during the deposition of silicon carbide from methyltrichlorosilane. J. Electrochem. Soc. 143, 1654 1996CrossRefGoogle Scholar
27Allendorf, M.D.Kee, R.J.: A model of silicon carbide chemical vapor deposition. J. Electrochem. Soc. 138, 841 1991CrossRefGoogle Scholar
28Papasouliotis, G.D.Stoirchos, S.V.: On the homogeneous chemistry of the thermal decomposition of methyltrichlorosilane. J. Electrochem. Soc. 141, 1599 1994CrossRefGoogle Scholar
29Jonas, S., Ptak, W.S., Sadowski, W.Walasek, E.: FTIR in Situ studies of the gas phase reactions in chemical vapor deposition of SiC. J. Electrochem. Soc. 142, 2357 1995CrossRefGoogle Scholar
30Tachibana, A., Kurosaki, Y., Yamaguchi, K.Yamabe, T.: Quantum chemical study of silicon carbide formation. J. Phys. Chem. 95, 6849 1991CrossRefGoogle Scholar
31Ge, Y., Gordon, M.S., Battaglia, F.Fox, R.O.: Theoretical study of the pyrolysis of methyltrichlorosilane in the gas phase. 1. Thermodynamics. J. Phys. Chem. A 111, 1462 2007CrossRefGoogle ScholarPubMed
32Ge, Y., Gordon, M.S., Battaglia, F.Fox, R.O.: Theoretical study of the pyrolysis of methyltrichlorosilane in the gas phase. 2. Reaction paths and transition states. J. Phys. Chem. A 111, 1475 2007CrossRefGoogle ScholarPubMed
33Kuo, D.H., Cheng, D.J.Shyy, W.J.: The effect of CH4 on the CVD beta-SiC growth. J. Electrochem. Soc. 137, 3688 1990CrossRefGoogle Scholar
34Kostjuhin, I.M.Sotirchos, S.V.: Codeposition of SiC and C from mixtures of methyltrichlorosilane and ethylene in hydrogen. Ind. Eng. Chem. Res. 40, 2586 2001CrossRefGoogle Scholar
35Choi, B.J., Jeun, S.H.Kim, D.R.: The effects of C3H8 on the chemical vapor deposition of silicon carbide in the CH3SiCl3 + H2 system. J. Eur. Ceram. Soc. 9, 357 1992CrossRefGoogle Scholar
36Kostjuhin, I.M.Sotirchos, S.V.: Multiplicity of steady states in the codeposition of silicon carbide and carbon. React. Kinet. Catal. Lett. 48, 2910 2002Google Scholar
37Lackey, W.J., Stinton, D.P.Sease, J.D.: Improved gas distributor for coating high-temperature gas-cooled reactor fuel particles. Nucl. Technol. 35, 227 1977CrossRefGoogle Scholar
38López-Honorato, E., Meadows, P.J., Xiao, P., Marsh, G.Abram, T.J.: Structure and mechanical properties of pyrolytic carbon produced by fluidized bed chemical vapor deposition. Nucl. Eng. Design 2008 DOI: 10.1016/j.nucengdes.2007.11.022CrossRefGoogle Scholar
39Krautwasser, P., Begun, G.M.Angelini, P.: Raman spectral characterization of silicon carbide nuclear fuel coatings. J. Am. Ceram. Soc. 66, 424 1983CrossRefGoogle Scholar
40Nakashima, S.Harima, H.: Raman investigation of SiC polytypes. Phys. Status Solidi (A) 162, 39 19973.0.CO;2-L>CrossRefGoogle Scholar
41Kunc, K., Balkanski, M.Nusimovici, M.A.: Lattice dynamics of several ANBS–N compounds having the zincblende structure. Phys. Status Solidi (B) 72, 229 1975CrossRefGoogle Scholar
42Ward, Y., Young, R.J.Shatwell, R.A.: Application of Raman microscopy to the analysis of silicon carbide monofilaments. J. Mater. Sci. 39, 6781 2004CrossRefGoogle Scholar
43Feldman, D.W., Parker, J.H., Choyke, W.J.Patrick, L.: Phonon dispersion curves by Raman scattering in SiC, polytypes 3C, 4H, 6H, 15R, and 21R. Phys. Rev. 173, 787 1968CrossRefGoogle Scholar
44Shatwell, R.A., Dyos, K.L., Prentice, C., Ward, Y.Young, R.J.: Microstructural analysis of silicon carbide monofilaments. J. Microsc. 201, 179 2001CrossRefGoogle ScholarPubMed
45Rohmfeld, S., Hundhausen, M.Ley, L.: Raman scattering in polycrystalline 3C–SiC: Influence of stacking faults. Phys. Rev. B 58, 9858 1998CrossRefGoogle Scholar
46Pujar, V.V.Cawley, J.D.: Computer simulations of diffraction effects due to stacking faults in beta-SiC: II, Experimental verification. J. Am. Ceram. Soc. 84, 2645 2001CrossRefGoogle Scholar
47Haase, V., Kirschtein, G., List, H., Ruprecht, S., Sangster, R., Schroder, F., Topper, W.Vanecek, H.: Gmelin Handbook of Inorganic Chemistry, Silicon, 8th ed.Springer-Verlag New York 1986 31Google Scholar
48Sasaki, Y., Nishina, Y., Sato, M.Okamura, K.: Raman study of SiC fibres made from polycarbosilane. J. Mater. Sci. 22, 443 1987CrossRefGoogle Scholar
49Smith, E.Dent, G.: Modern Raman Spectroscopy John Wiley & Sons Sussex 2005 76Google Scholar
50Reznik, B., Gerthsen, D., Zhang, W.Huttinger, K.J.: Microstructure of SiC deposited from methyltrichlorosilane. J. Eur. Ceram. Soc. 23, 1499 2003CrossRefGoogle Scholar
51Gulden, T.D.: Deposition and microstructure of vapor-deposited silicon carbide. J. Am. Ceram. Soc. 51, 424 1968CrossRefGoogle Scholar
52Snead, L.L., Nozawa, T., Katoh, Y., Byun, T.S., Kondo, S.Petti, D.A.: Handbook of SiC properties for fuel performance modeling. J. Nucl. Mater. 371, 329 2007CrossRefGoogle Scholar
53Lespiaux, D.Langlais, F.: Chemisorption on beta-SiC and amorphous SiO2 during CVD of silicon carbide from the Si–C–H–Cl system. Correlations with the nucleation process. Thin Solid Films 265, 40 1995CrossRefGoogle Scholar
54Sachdev, H.Scheid, P.: Formation of silicon carbide and silicon carbonitride by RF-plasma CVD. Diamond Relat. Mater. 10, 1160 2001CrossRefGoogle Scholar
55Norinaga, K., Deutschmann, O.Huttinger, K.J.: Analysis of gas phase compounds in chemical vapor deposition of carbon from light hydrocarbons. Carbon 44, 1790 2006CrossRefGoogle Scholar
56Becker, A.Huttinger, K.J.: Chemistry and kinetics of chemical vapor deposition of pyrocarbon—III pyrocarbon deposition from propylene and benzene in the low temperature regime. Carbon 36, 201 1998CrossRefGoogle Scholar
57Becker, A.Huttinger, K.J.: Chemistry and kinetics of chemical vapor deposition of pyrocarbon—II pyrocarbon deposition from ethylene, acetylene and 1,3-butadiene in the low temperature regime. Carbon 36, 177 1998CrossRefGoogle Scholar
58Dong, G.L.Huttinger, K.J.: Consideration of reaction mechanisms leading to pyrolytic carbon of different textures. Carbon 40, 2515 2002CrossRefGoogle Scholar
59Neudeck, P.G., Trunek, A.J., Spry, D.J., Powell, J.A., Du, H., Skowronski, M., Huang, X.R.Dudley, M.: CVD growth of 3C–SiC on 4H/6H mesas. Chem. Vap. Deposition 12, 531 2006CrossRefGoogle Scholar
60Stevens, R.: Defects in silicon carbide. J. Mater. Sci. 7, 517 1972CrossRefGoogle Scholar
61Gulden, T.D.: Stacking faults in chemical vapor deposited beta silicon carbide. J. Am. Ceram. Soc. 54, 498 1971CrossRefGoogle Scholar