Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-02T22:27:06.205Z Has data issue: false hasContentIssue false

Controlled crystallization of vaterite from viscous solutions of organic colloids

Published online by Cambridge University Press:  31 January 2011

Ladislav Pach
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802-4801
Zdenek Hrabe
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802-4801
Sridhar Komarneni
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802-4801
Rustum Roy
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802-4801
Get access

Abstract

Precipitation of calcium carbonate from hydroxyethyl cellulose (HEC) containing aqueous solutions of CaCl2 and Na2CO3 resulted in an uncommon polymorph, vaterite. In contrast to precipitations without HEC, crystallization in the presence of HEC led to a shell-shaped body consisting of organized vaterite platelets. The artificial shell is a composite of stacks of vaterite and about 2% HEC. In the experimental arrangement used, HEC controlled both nucleation and crystal growth of vaterite. Concentration of HEC also affected the platelet's thickness which in turn influenced the shell's morphology as well. These results demonstrate the importance of organic-inorganic interface in controlling crystallization.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Mann, S., Nature 332, 119 (1988).CrossRefGoogle Scholar
2Birchall, J. D., Trans. J. Br. Ceram. Soc. 83, 158 (1984).Google Scholar
3Addadi, L. and Weiner, S., Proc. Natl. Acad. Sci. 82, 41104114 (June 1985).CrossRefGoogle Scholar
4Birchall, J. D. and Davy, R. J., J. Cryst. Growth 54, 323 (1981).CrossRefGoogle Scholar
5Williams, R. J. P., Proc. R. Inst. G. B. 48, 93109, 1976 (publ. 1977).Google Scholar
6Mann, S., Heywood, B. R., Sundara, R., and Birchall, J. D., Nature 334, 692 (1988).CrossRefGoogle Scholar
7Landau, E. M., Mol. Cryst. Liq. Cryst. 134, 323 (1986).Google Scholar
8Addadi, L., Moradian, J., Shay, E., Maroudas, N. G., and Weiner, S., Proc. Natl. Acad. Sci. 84, 2732 (1987).Google Scholar
9Peterson, I., Science News 133, 154 (1988).CrossRefGoogle Scholar
10McPherson, A. and Schlichta, P., Science 239, 385 (1988).Google Scholar
11McCauley, W. and Roy, R., Am. Mineralogist 59, 947 (1984).Google Scholar
12Henisch, H. K., J. Cryst. Growth 75, 195 (1986).CrossRefGoogle Scholar
13Henisch, H. K., Crystals in Gels and Liesegang Rings (Cambridge University Press, Cambridge, 1988).CrossRefGoogle Scholar