Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T16:19:02.540Z Has data issue: false hasContentIssue false

Copper (I) oxide powder generation by spray pyrolysis

Published online by Cambridge University Press:  31 January 2011

D. Majumdar
Affiliation:
Center for Micro-engineered Ceramics, Department of Chemical Engineering, University of New Mexico, Albuquerque, New Mexico 87131
T. A. Shefelbine
Affiliation:
Center for Micro-engineered Ceramics, Department of Chemical Engineering, University of New Mexico, Albuquerque, New Mexico 87131
T. T. Kodas*
Affiliation:
Center for Micro-engineered Ceramics, Department of Chemical Engineering, University of New Mexico, Albuquerque, New Mexico 87131
H. D. Glicksman
Affiliation:
DuPont Electronics, DuPont Company, Experimental Station Building E334, P.O. Box 80334, Wilmington, Delaware 19880
*
a) Author to whom correspondence should be addressed.
Get access

Abstract

Copper oxide powders were prepared by the spray pyrolysis of copper nitrate solutions over a range of temperatures (400–1300 °C) and residence times (3–7 s). Phase-pure [by x-ray diffraction (XRD)] copper (I) oxide was obtained at 800–1300 °C in an inert (nitrogen) atmosphere. The particles varied from smooth, solid spheres at 1300 °C to irregularly shaped and hollow particles at 800 °C with dense particles of Cu2O being made only at 1000 °C or higher. The particles were polycrystalline with an average crystallite size of 42 nm at 800 °C, while at 1000–1200 °C, the particles were single crystals. Spray pyrolysis in forming gas (7% H2–N2) atmosphere at 500–700 °C gave Cu while spray pyrolysis in air yielded CuO over 800–1000 °C and a mixture of Cu2O/CuO at 1200 °C. These results show that solid, phase-pure Cu2O particles can be produced by aerosol-phase densification at temperatures below its melting point (1235 °C).

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Holzschuh, H. and Suhr, H., Appl. Phys. A 51, 486490 (1990).CrossRefGoogle Scholar
2.Ristov, M., Sinadinovski, G. J., and Mitreski, M., Thin Solid Films 167, 309316 (1988).CrossRefGoogle Scholar
3.Caley, R. H., Gold Bull. 9, 7075 (1976, July).CrossRefGoogle Scholar
4.Pietrikova, A. and Kapusanska, E., Metall. Mater. 29, 262272 (1991).Google Scholar
5.Borland, W., in Electronic Materials Handbook 332 (ASM INTERNATIONAL, Metals Park, OH, 1989).Google Scholar
6.Messing, G. L., Zhang, S-C., and Jayanthi, G., J. Am. Ceram. Soc. 76, 27072726 (1993).CrossRefGoogle Scholar
7.Kodas, T. T., Adv. Mater. 28, 794806 (1989).Google Scholar
8.Gurav, A. S., Plyum, T. C., Kodas, T. T., and Xiong, Y., Aerosol Sci. Technol. 19, 411452 (1993).CrossRefGoogle Scholar
9.Pluym, T. C., Kodas, T. T., Wang, L., and Glicksman, H. D., J. Mater. Res. 10, 16611673 (1995).CrossRefGoogle Scholar
10.Ortega, J., Kodas, T.T., Chadda, S., Smith, D.M., and Cifticioglu, M., Chem. Mater. 3, 746751 (1991).CrossRefGoogle Scholar
11.Ward, T. L., Kodas, T. T., and Carim, A. H., J. Mater. Res. 7, 827835 (1992).CrossRefGoogle Scholar
12.Pluym, T. C., Lyons, S. W., Powell, Q. H., Gurav, A. S., Kodas, T. T., Wang, L. M., and Glicksman, H. D., Mater. Res. Bull. 28, 369376 (1993).CrossRefGoogle Scholar
13.Pluym, T. C., Ward, T. L., Powell, Q. H., Gurav, A. S., Kodas, T. T., Wang, L. M., and Glicksman, H. D., J. Aerosol Sci. 24, 383392 (1993).CrossRefGoogle Scholar
14.Nagashima, K., Iwaida, T., Sasaki, H., Katatae, Y., and Kato, A., Nippon Kagaku Zasshi 1, 1724 (1990).CrossRefGoogle Scholar
15.Nagashima, K., Wada, M., and Kato, A., J. Mater. Res. 5, 28282834 (1990).CrossRefGoogle Scholar
16.Senzaki, Y., Hampden-Smith, M. J., Kodas, T. T., and Hussler, J. W., J. Am. Ceram. Soc. (in press).Google Scholar
17.Xue, J. and Dieckmann, R., High Temperatures–High Pressures 24, 271284 (1992).Google Scholar
18.Garcia-Martinez, O., Millian, P., and Rojas, R. M., J. Mater. Sci. 21, 44114418 (1986).CrossRefGoogle Scholar
19.Charlesworth, D. H. and Marshall, W. R., J. A.I.C.H.E J. 6, 923 (1960).CrossRefGoogle Scholar
20.Nesic, S. and Vodnik, J., Chem. Eng. Sci. 46, 527537 (1991).CrossRefGoogle Scholar
21.Sano, Y. and Keey, R. B., Chem. Eng. Sci. 17, 881889 (1982).CrossRefGoogle Scholar