Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-13T02:52:33.824Z Has data issue: false hasContentIssue false

Copper oxide as a “self-cleaning” substrate for graphene growth

Published online by Cambridge University Press:  29 January 2014

Carl W. Magnuson
Affiliation:
Department of Mechanical Engineering and the Materials Science and Engineering Program, The University of Texas at Austin, Austin, Texas 78712
Xianghua Kong
Affiliation:
Department of Mechanical Engineering and the Materials Science and Engineering Program, The University of Texas at Austin, Austin, Texas 78712
Hengxing Ji
Affiliation:
Department of Mechanical Engineering and the Materials Science and Engineering Program, The University of Texas at Austin, Austin, Texas 78712; and Department of Materials Science and Engineering and CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei 230036, China
Cheng Tan
Affiliation:
Department of Mechanical Engineering and the Materials Science and Engineering Program, The University of Texas at Austin, Austin, Texas 78712
Huifeng Li
Affiliation:
Department of Mechanical Engineering and the Materials Science and Engineering Program, The University of Texas at Austin, Austin, Texas 78712
Richard Piner
Affiliation:
Department of Mechanical Engineering and the Materials Science and Engineering Program, The University of Texas at Austin, Austin, Texas 78712
Carl A. Ventrice Jr.
Affiliation:
College of Nanoscale Science and Engineering, University at Albany-SUNY, Albany, New York 12203
Rodney S. Ruoff*
Affiliation:
Department of Mechanical Engineering and the Materials Science and Engineering Program, The University of Texas at Austin, Austin, Texas 78712
*
c)Address all correspondence to this author. e-mail: r.ruoff@mail.utexas.edu
Get access

Abstract

Commonly used techniques for cleaning copper substrates before graphene growth via chemical vapor deposition (CVD), such as rinsing with acetone, nitric, and acetic acid, and high temperature hydrogen annealing still leave residual adventitious carbon on the copper surface. This residual carbon promotes graphene nucleation and leads to higher nucleation density. We find that copper with an oxidized surface can act as a self-cleaning substrate for graphene growth by CVD. Under vacuum conditions, copper oxide thermally decomposes, releasing oxygen from the substrate surface. The released oxygen reacts with the carbon residues on the copper surface and forms volatile carbon monoxide and carbon dioxide, leaving a clean copper surface free of carbon for large-area graphene growth. Using oxidized electropolished copper foil leads to a reduction in graphene nucleation density by over a factor of 1000 when compared to using chemically cleaned oxygen free copper foil.

Type
Invited Papers
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L., and Ruoff, R.S.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932), 13121314 (2009).Google Scholar
Batzill, M.: The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects. Surf. Sci. Rep. 67(3–4), 83115 (2012).CrossRefGoogle Scholar
Yan, Z., Lin, J., Peng, Z., Sun, Z., Zhu, Y., Li, L., Xiang, C., Samuel, E.L.C., Kittrell, C., and Tour, J.M.: Toward the synthesis of wafer-scale single-crystal graphene on copper foils. ACS Nano 6(10), 91109117 (2012).Google Scholar
Yu, Q., Jauregui, L.A., Wu, W., Colby, R., Tian, J., Su, Z., Cao, H., Liu, Z., Pandey, D., Wei, D., Chung, T.F., Peng, P., Guisinger, N.P., Stach, E.A., Bao, J., Pei, S-S., and Chen, Y.P.: Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater. 10(6), 443449 (2011).Google Scholar
Wu, W., Jauregui, L.A., Su, Z., Liu, Z., Bao, J., Chen, Y.P., and Yu, Q.: Growth of single crystal graphene arrays by locally controlling nucleation on polycrystalline Cu using chemical vapor deposition. Adv. Mater. 23(42), 48984903 (2011).Google Scholar
Wu, Y.A., Fan, Y., Speller, S., Creeth, G.L., Sadowski, J.T., He, K., Robertson, A.W., Allen, C.S., and Warner, J.H.: Large single crystals of graphene on melted copper using chemical vapor deposition. ACS Nano 6(6), 50105017 (2012).Google Scholar
Geng, D., Wu, B., Guo, Y., Huang, L., Xue, Y., Chen, J., Yu, G., Jiang, L., Hu, W., and Liu, Y.: Uniform hexagonal graphene flakes and films grown on liquid copper surface. Proc. Natl. Acad. Sci. U.S.A. 109(21), 79927996 (2012).Google Scholar
Wang, H., Wang, G., Bao, P., Yang, S., Zhu, W., Xie, X., and Zhang, W-J.: Controllable synthesis of submillimeter single-crystal monolayer graphene domains on copper foils by suppressing nucleation. J. Am. Chem. Soc. 134(8), 36273630 (2012).Google Scholar
Li, X., Magnuson, C.W., Venugopal, A., Tromp, R.M., Hannon, J.B., Vogel, E.M., Colombo, L., and Ruoff, R.S.: Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J. Am. Chem. Soc. 133(9), 28162819 (2011).Google Scholar
Zhang, Y., Zhang, L., Kim, P., Ge, M., Li, Z., and Zhou, C.: Vapor trapping growth of single-crystalline graphene flowers: Synthesis, morphology, and electronic properties. Nano Lett. 12(6), 28102816 (2012).Google Scholar
Gao, L., Ren, W., Xu, H., Jin, L., Wang, Z., Ma, T., Ma, L-P., Zhang, Z., Fu, Q., Peng, L-M., Bao, X., and Cheng, H-M.: Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat. Commun. 3, 699 (2012).Google Scholar
Iwasaki, T., Park, H.J., Konuma, M., Lee, D.S., Smet, J.H., and Starke, U.: Long-range ordered single-crystal graphene on high-quality heteroepitaxial Ni thin films grown on MgO(111). Nano Lett. 11(1), 7984 (2011).Google Scholar
Luo, Z., Lu, Y., Singer, D.W., Berck, M.E., Somers, L.A., Goldsmith, B.R., and Johnson, A.T.C.: Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure. Chem. Mater. 23(6), 14411447 (2011).CrossRefGoogle Scholar
Ago, H., Ogawa, Y., Tsuji, M., Mizuno, S., and Hibino, H.: Catalytic growth of graphene: Toward large-area single-crystalline graphene. J. Phys. Chem. Lett. 3(16), 22282236 (2012).Google Scholar
Wood, J.D., Schmucker, S.W., Lyons, A.S., Pop, E., and Lyding, J.W.: Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition. Nano Lett. 11(11), 45474554 (2011).Google Scholar
Kim, H., Mattevi, C., Calvo, M.R., Oberg, J.C., Artiglia, L., Agnoli, S., Hirjibehedin, C.F., Chhowalla, M., and Saiz, E.: Activation energy paths for graphene nucleation and growth on Cu. ACS Nano 6(4), 36143623 (2012).Google Scholar
Choubak, S., Biron, M., Levesque, P.L., Martel, R., and Desjardins, P.: No graphene etching in purified hydrogen. J. Phys. Chem. Lett. 4(7), 11001103 (2013).Google Scholar
Santoni, A. and Urban, J.: AES and EELS investigation of carbonaceous layers on Cu(110) and Cu(100). Surf. Sci. 186(3), 376382 (1987).Google Scholar
Loginova, E., Bartelt, N.C., Feibelman, P.J., and McCarty, K.F.: Factors influencing graphene growth on metal surfaces. New J. Phys. 11(6), 063046 (2009).Google Scholar
Zhang, B., Lee, W.H., Piner, R., Kholmanov, I., Wu, Y., Li, H., Ji, H., and Ruoff, R.S.: Low-temperature chemical vapor deposition growth of graphene from toluene on electropolished copper foils. ACS Nano 6(3), 24712476 (2012).Google Scholar
Ferrari, A.C. and Basko, D.M.: Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8(4), 235246 (2013).Google Scholar
Malard, L.M., Pimenta, M.A., Dresselhaus, G., and Dresselhaus, M.S.: Raman spectroscopy in graphene. Phys. Rep. 473(5–6), 5187 (2009).Google Scholar
Li, X., Cai, W., Colombo, L., and Ruoff, R.S.: Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 9(12), 42684272 (2009).Google Scholar
Chen, S., Brown, L., Levendorf, M., Cai, W., Ju, S-Y., Edgeworth, J., Li, X., Magnuson, C.W., Velamakanni, A., Piner, R.D., Kang, J., Park, J., and Ruoff, R.S.: Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano 5(2), 13211327 (2011).Google Scholar
Poulston, S., Parlett, P.M., Stone, P., and Bowker, M.: Surface oxidation and reduction of CuO and Cu2O studied using XPS and XAES. Surf. Interface Anal. 24(12), 811820 (1996).Google Scholar
Dubé, C.E., Workie, B., Kounaves, S.P., Robbat, A., Aksub, M.L., and Davies, G.: Electrodeposition of metal alloy and mixed oxide films using a single-precursor tetranuclear copper-nickel complex. J. Electrochem. Soc. 142(10), 33573365 (1995).Google Scholar
Goswami, A. and Trehan, Y.N.: The thermal decomposition of cupric oxide in vacuo. Proc. Phys. Soc. B 70, 1005 (1957).Google Scholar
Gan, Z.H., Yu, G.Q., Tay, B.K., Tan, C.M., Zhao, Z.W., and Fu, Y.Q.: Preparation and characterization of copper oxide thin films deposited by filtered cathodic vacuum arc. J. Phys. D: Appl. Phys. 37(1), 81 (2004).Google Scholar
Gong, Y.S., Lee, C., and Yang, C.K.: Atomic force microscopy and Raman spectroscopy studies on the oxidation of Cu thin films. J. Appl. Phys. 77(10), 54225425 (1995).CrossRefGoogle Scholar
Kodera, K., Kusunoki, I., and Shimizu, S.: Dissociation pressures of various metallic oxides. Bull. Chem. Soc. Jpn. 41(5), 10391045 (1968).Google Scholar
Hallstedt, B., Risold, D., and Gauckler, L.J.: Thermodynamic assessment of the copper-oxygen system. J. Phase Equilib. 15(5), 483499 (1994).Google Scholar
Chavez, K.L. and Hess, D.W.: A novel method of etching copper oxide using acetic acid. J. Electrochem. Soc. 148(11), G640G643 (2001).Google Scholar
Hao, Y., Bharathi, M.S., Wang, L., Liu, Y., Chen, H., Nie, S., Wang, X., Chou, H., Tan, C., Fallahazad, B., Ramanarayan, H., Magnuson, C.W., Tutuc, E., Yakobson, B.I., McCarty, K.F., Zhang, Y-W., Kim, P., Hone, J., Colombo, L., and Ruoff, R.S.: The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342(6159), 720723 (2013).Google Scholar
Robinson, Z.R., Ong, E.W., Mowll, T.R., Tyagi, P., Gaskill, D.K., Geisler, H., and Ventrice, C.A.; Influence of chemisorbed oxygen on the growth of graphene on Cu(100) by chemical vapor deposition. J. Phys. Chem. C 117(45), 2391923927 (2013).Google Scholar