Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-02T20:19:15.350Z Has data issue: false hasContentIssue false

Correlation among Si, Ge, and B deposition rates in low-pressure CVD with SiH4−GeH4−B2H6-He mixtures

Published online by Cambridge University Press:  31 January 2011

Katsumi Murase
Affiliation:
NTT LSI Laboratories, 3–1 Morinosato-Wakamiya, Atsugi, Kanagawa, 243–01 Japan
Get access

Abstract

The deposition process at 500 °C with SiH4–GeH4–B2H6–He mixtures, which yields the amorphous Si–Ge–B alloy, was studied. Although in crystalline Si and Ge the maximum B content is limited to the solid solubility, any amount of B can uniformly be contained in amorphous Si–Ge–B. Thus, films with a B content up to 64 at.% have been prepared. The deposition rate of atoms, defined as the number of atoms deposited in a unit time interval, is obtained for each element by analyzing the growth rate together with the composition and the mass density of the film. When the SiH4 and the B2H6 partial pressures are constant, the Si and the B deposition rates are almost independent of the GeH4 partial pressure. In contrast, the Si deposition rate increases remarkably as the B2H6 partial pressure increases, even when the SiH4 partial pressure is maintained constant. A simple model is proposed for explaining the relationship between the Si and the B deposition rates.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Tatsumi, T., Hirayama, H., and Aizaki, N., Appl. Phys. Lett. 52, 895 (1988).CrossRefGoogle Scholar
2Temkin, H., Bean, J. C., Antreasyan, A., and Leibenguth, R., Appl. Phys. Lett. 52, 1089 (1988).CrossRefGoogle Scholar
3Xu, D-X., Shen, G-D., Willander, M., Ni, W-X., and Hansson, G. V., Appl. Phys. Lett. 52, 2239 (1988).CrossRefGoogle Scholar
4Kamins, T. I., Nauka, K., Kruger, J. B., Hoyt, J. L., King, C. A., Noble, D. B., Gronet, C. M., and Gibbons, J. F., IEEE Electron Device Lett. 10, 503 (1989).CrossRefGoogle Scholar
5Prinz, E. J., Garone, P. M., Schwartz, P. V., Xiao, X., and Sturm, J. C., IEDM Technical Digest, 639 (1989).Google Scholar
6Schreiber, H-U. and Bosch, B. G., IEDM Technical Digest, 643 (1989).Google Scholar
7Taft, R. C., Plummer, J. D., and Iyer, S. S., IEDM Technical Digest, 655 (1989).Google Scholar
8Patton, G. L., Comfort, J. H., Meyerson, B. S., Crabbe, E. F., Scilla, G. J., De Fresart, E., Stork, J. M. C., Sun, J.Y-C., Harame, D. L., and Burghartz, J. N., IEEE Electron Device Lett. 11, 171 (1990).CrossRefGoogle Scholar
9Meyerson, B. S., Uram, K. J., and LeGoues, F. K., Appl. Phys. Lett. 53, 2555 (1988).CrossRefGoogle Scholar
10Eversteyn, F. C. and Put, B. H., J. Electrochem. Soc. 120, 106 (1973).CrossRefGoogle Scholar
11Yasuda, Y., Hirabayashi, K., and Moriya, T., Proc. 5th Conf. Solid State Devices, Tokyo, 400 (1973).Google Scholar
12Nakayama, S., Kawashima, I., and Murota, J., J. Electrochem. Soc. 133, 1721 (1986).CrossRefGoogle Scholar
13Ducret, L., Anal. Chim. Acta 17, 213 (1957).CrossRefGoogle Scholar