Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-14T19:18:46.181Z Has data issue: false hasContentIssue false

Correlation between effective activation energy and pre-exponential factor for diffusion in bulk metallic glasses

Published online by Cambridge University Press:  31 January 2011

S. K. Sharma
Affiliation:
Technische Fakultät der Universität Kiel, Lehrstuhl f¨r Materialverbunde, Kaiserstraβe 2, D-24143 Kiel, Germany
F. Faupel*
Affiliation:
Technische Fakultät der Universität Kiel, Lehrstuhl f¨r Materialverbunde, Kaiserstraβe 2, D-24143 Kiel, Germany
*
b) Address all correspondence to this author.cgcq@hotmail.com
Get access

Abstract

The values of effective activation energy (Q) and pre-exponential factor (D0) reported in the literature for diffusion in the novel bulk metallic glasses, both in the glassy and the deeply supercooled liquid regions, are found to follow the same correlation as reported earlier in conventional metallic glasses, namely D0 = A exp(Q/B), where A and B are fitting parameters with values A = 4.8 × 10−19 m2 s−1 and B = 0.056 eV atom−1. A possible explanation for the observed values of A and B is given by combining an activation energy and a free volume term. The interpretation favors a cooperative mechanism for diffusion in the glassy and deeply supercooled liquid states.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Peker, A. and Johnson, W.L., Appl. Phys. Lett. 63, 2342 (1993).CrossRefGoogle Scholar
2.Inoue, A., Zhang, T., and Masumoto, T., Mater. Trans. JIM 31, 177 (1990).CrossRefGoogle Scholar
3.Geyer, U., Schneider, S., Johnson, W.L., Qiu, Y., Tombrello, T.A., and Macht, M-P., Phys. Rev. Lett. 75, 2364 (1995).CrossRefGoogle Scholar
4.Fielitz, P., Macht, M.-P., Naundorf, V., and Frohberg, G., in Proceedings of the Internatioinal Conference on Liquid and Amorphous Metals, Dortmund, Germany, Aug. 1998 (J. Non-Cryst. Solids, in press).Google Scholar
5.Knorr, K., Macht, M.-P., Freitag, K., and Mehrer, H., in Proceedings of the International Conference on Liquid and Amorphous Metals, Dortmund, Germany, Aug. 1998 (J. Non-Cryst. Solids, in press).Google Scholar
6.Nonaka, H., Kimura, Y., Yamauchi, K., Nakajima, H., Zhang, T., Inoue, A., and Masumoto, T., Defect and Diffusion Forum 143–147, 837 (1997).CrossRefGoogle Scholar
7.Ehmler, H., Heesemann, A., Raetzke, K., Faupel, F., and Geyer, U., Phys. Rev. Lett. 80, 4919 (1998).CrossRefGoogle Scholar
8.Knorr, K., Macht, M-P., and Mehrer, H., in Bulk Metallic Glasses, edited by Johnson, W.L., Liu, C.T., and Inoue, A. (Mater. Res. Soc. Symp. Proc. 554, Warrendale, PA, 1999).Google Scholar
9.Numerical Data and Functional Relationships in Science and Technology, Landolt-Bronstein New Series, Group III Vol. 26 (Springer-Verlag, Berlin, 1990).Google Scholar
10.Cahn, R.W., in Materials Science and Technology, edited by Cahn, R.W., Haasen, P., and Kramer, E.J. (VCH, Weinheim, Germany, 1991), Vol. 9. p. 493.Google Scholar
11.Faupel, F., Phys. Status Solidi (a) 134, 9 (1992).CrossRefGoogle Scholar
12.Turnbull, D. and Cohen, M.H., J. Chem. Phys. 52, 3038 (1970).CrossRefGoogle Scholar
13.Spaepen, F., in Physics of Defects, Les Houches Lectures XXXV, edited by Balian, R. (North Holland, Amsterdam, 1981), p. 135.Google Scholar
14.Sharma, S.K., Banerjee, S., Kuldeep, , and Jain, A.K., J. Mater. Res. 4, 603 (1989).CrossRefGoogle Scholar
15.Sharma, S.K., Macht, M-P., and Naundorf, V., J. Non-Crys. Solids 156–158, 437 (1993).CrossRefGoogle Scholar
16.Naundorf, V., Macht, M-P., Bakai, A.S., and Lazarev, N., J. Non-Cryst. Solids 224, 122 (1998).CrossRefGoogle Scholar
17.Shewmon, P.G., Diffusion in Solids, 2nd ed. (The Minerals, Metals and Materials Society, Warrendale, PA, 1989), p. 74.Google Scholar
18.Cohen, M.H. and Grest, G.S., Ann. N.Y. Acad. Sci. 271, 199 (1981).CrossRefGoogle Scholar
19.Seeger, A. and Chik, K.P., Phys. Status Solidi 29, 455 (1968).CrossRefGoogle Scholar
20.Faupel, F., Huppe, P-W., and Rätzke, K., Phys. Rev. Lett. 65, 1219 (1990).CrossRefGoogle Scholar
21.Heesemann, A., Rätzke, K., Faupel, F., Hollmann, J., and Heinemann, K., Europhys. Lett. 29, 221 (1995).CrossRefGoogle Scholar
22.Spaepen, F., Mater. Sci. Eng. 97, 403 (1988).CrossRefGoogle Scholar
23.Duine, P.A., Sietsma, J., and van den Beukel, A., Diffus. Defect Data, Pt. A 117–118, 91 (1995).CrossRefGoogle Scholar
24.van den Beukel, A., Phys. Stat. Sol. 128, 285 (1991).CrossRefGoogle Scholar
25.Masuhr, A., Waniuk, T.A., Busch, R., and Johnson, W.L., Phys. Rev. Lett. 82, 2290 (1999).CrossRefGoogle Scholar
26.Busch, R., Masuhr, A., Bakke, E., Waniuk, T.A., and Johnson, W.L., in Bulk Metallic Glasses, edited by Johnson, W.L., Liu, C.T., and Inoue, A. (Mater. Res. Soc. Symp. Proc. 554, Warrendale, PA, 1999).Google Scholar
27.Busch, R. and Johnson, W.L., Appl. Phys. Lett 72, 2695 (1998).CrossRefGoogle Scholar
28.Stelter, E.C. and Lazarus, D., Phys. Rev. B 36, 9545 (1987).CrossRefGoogle Scholar
29.Schober, H.R., Physica A 201, 14 (1993).CrossRefGoogle Scholar
30.Schober, H.R., Oligschleger, C., and Laird, B.B., J. Non-Cryst. Solids 156–158, 965 (1993).CrossRefGoogle Scholar
31.Götze, W. and Sjogren, L., J. Non-Cryst. Sol. 139, 161 (1991).CrossRefGoogle Scholar
32.Meyer, A., Wuttke, J., Petry, W., Randl, O.G., and Schober, H.R., Phys. Rev. Lett. 80, 4454 (1998).CrossRefGoogle Scholar
33.Tang, X-P., Busch, R., Johnson, W.L., and Wu, Y., Phys. Rev. Lett. 81, 5358 (1998).CrossRefGoogle Scholar
34.Spaepen, F. and Turnball, D., Scripta Metall. Mater. 25, 1563 (1991).CrossRefGoogle Scholar
35.Höfler, H.J., Averback, R.S., Mehrer, H., and Rummel, G., Philos. Mag. Lett. 66, 301 (1992).CrossRefGoogle Scholar
36.Grandjean, A., Blanchard, P., and Limoge, Y., Phys. Rev. Lett. 78, 697 (1997).CrossRefGoogle Scholar
37.Klugkist, P., Rätzke, K., and Faupel, F., Phys. Rev. Lett. 81, 614 (1998).CrossRefGoogle Scholar