Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-02T17:31:20.826Z Has data issue: false hasContentIssue false

Correlation between structure, energy, and ideal cleavage fracture for symmetrical grain boundaries in fcc metals

Published online by Cambridge University Press:  31 January 2011

D. Wolf
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
Get access

Abstract

The misorientation phase space for symmetrical grain boundaries is explored by means of atomistic computer simulations, and the relationship between the tilt and twist boundaries in this three-parameter phase space is clucidated. The so-called random-boundary model (in which the interactions of atoms across the interface are assumed to be entirely random) is further developed to include relaxation of the interplanar spacings away from the grain boundary. This model is shown to include fully relaxed free surfaces naturally, thus permitting a direct comparison of the physical properties of grain boundaries and free surfaces, and hence the determination of ideal cleavage-fracture energies of grain boundaries. An extensive comparison with computer-simulation results for symmetrical tilt and twist boundaries shows that the random-boundary model also provides a good description of the overall structure-energy correlation for both low- and high-angle tilt and twist boundaries. Finally, the role of the interplanar spacing parallel to the grain boundary in both the grain-boundary and cleavage-fracture energies is elucidated.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 See, for example, Goux, C., Can. Metal. Quarterly 13, 9 (1974).Google Scholar
2Griffith, A. A., Philos. Trans. R. Soc. London A 221, 163 (1920).Google Scholar
3Smith, D. A., Scripta Metall. 8, 377 (1974).Google Scholar
4Wolf, D., J. Phys. Colloque C4 46, C4197 (1985).Google Scholar
5Wolf, D., Acta Metall. 37, 1983 (1989).Google Scholar
6Wolf, D., Acta Metall. 37, 2823 (1989).Google Scholar
7Wolf, D., Scripta Metall. 23, 377 (1989).CrossRefGoogle Scholar
8Read, W. T. and Shockley, W., Phys. Rev. 78, 275 (1950).Google Scholar
9Wolf, D. and Phillpot, S. R., Mater. Sci. Eng. A 107, 3 (1989).Google Scholar
10Kluge, M., Wolf, D., Lutsko, J. F., and Phillpot, S. R., J. Appl. Phys. 67, 2370 (1990).CrossRefGoogle Scholar
11Wolf, D., Acta Metall. 38, 781 (1990).CrossRefGoogle Scholar
12Wolf, D., Surf. Sci. 226, 389 (1990).CrossRefGoogle Scholar
13 See, for example, Jokl, M. L., Vitek, V., and McMahon, C. J., Acta Metall. 28, 1479 (1980).CrossRefGoogle Scholar
14Daw, M. S. and Baskes, M. I., Phys. Rev. Lett. 50, 1985 (1983).Google Scholar
15Finnis, M. W. and Sinclair, J. E., Philos. Mag. A 50, 45 (1984).Google Scholar
16Daw, M. S. and Baskes, M. I., Phys. Rev. B 33, 7983 (1986).Google Scholar
17Benedek, R., J. Phys. F 8, 1119 (1978).CrossRefGoogle Scholar
18Wolf, D. and Lutsko, J. F., Z. Kristallogr. 189, 239 (1989).Google Scholar
19Brokman, A. and Balluffi, R. W., Acta Metall. 29, 1703 (1981).Google Scholar
20Wolf, D., Acta Metall. 32, 245 (1984).CrossRefGoogle Scholar
21Sutton, A. P., Philos. Trans. R. Soc. London (submitted).Google Scholar
22Smith, J. R. and Banerjea, A., Phys. Rev. Lett. 59, 2451 (1987).CrossRefGoogle Scholar
23Wolf, D., Philos. Mag. A (in press).Google Scholar
24van der Merwe, J. H., Proc. R. Soc. London A 43, 616 (1950).Google Scholar
25Rey, C. and Saada, G., Philos. Mag. A 33, 825 (1977).Google Scholar
26Bonnet, R., Philos. Mag. A 43, 1165 (1981).CrossRefGoogle Scholar
27Shi, A-C., Rottman, C., and He, Yu, Philos. Mag. A 55, 499 (1987).CrossRefGoogle Scholar
28Wang, G-J. and Vitek, V., Acta Metall. 34, 951 (1986).Google Scholar
29Vitek, V., Scripta Metall. 21, 711 (1987).CrossRefGoogle Scholar
30Wolf, D., Scripta Metall. 23, 1713 (1989).Google Scholar
31Wolf, D., Scripta Metall. 23, 1913 (1989).CrossRefGoogle Scholar
32Chan, S-W. and Balluffi, R. W., Acta Metall. 26, 113 (1986).Google Scholar
33Wolf, D., Philos. Mag. B 59, 667 (1989).Google Scholar
34Phillpot, S. R. and Wolf, D., Philos. Mag. A 60, 545 (1989).CrossRefGoogle Scholar
35Wolf, D., J. Am. Ceram. Soc. 67, 1 (1984).CrossRefGoogle Scholar
36Wolf, D., in Surfaces and Interfaces in Ceramic and Ceramic-Metal Systems, edited by Pask, J. and Evans, A. (Plenum, New York, 1981), p. 13.Google Scholar
37 See, for example, Sutton, A. P. and Vitek, V., Philos. Trans. R. Soc. London A 309, 1 (1983)Google Scholar