Published online by Cambridge University Press: 31 January 2011
Fine grained, three-phase ceramic composites that exhibit favorable toughness, hardness, and high room-temperature strength were evaluated for high-temperature mechanical stability. A 50vol%Al2O3–25vol%NiAl2O4–25vol%3 mol%yttria-stabilized tetragonal zirconia polycrystal (3Y–TZP) and a 33vol%Al2O3–33vol%NiAl2O4–33vol%3Y-TZP composite were compression creep tested at temperatures between 1350 and 1450 °C under constant stresses of 20–45 MPa. The three-phase microstructure effectively limited grain growth (average d0 = 1.3 μm, average df = 1.6 μm after 65% true strain). True strain rates were 10−4 to 10−6 s−1 with stress exponents n = 1.7 to 1.8 and a grain-size exponent p = 1.3. A method for compensating for grain growth is presented using stress jump tests. The apparent activation energy for high-temperature deformation for 50vol%Al2O3–25vol%NiAl2O4–25vol%3Y–TZP was found to be 373 kJ/mol-K.