Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-13T03:48:08.489Z Has data issue: false hasContentIssue false

Critical examination of growth rate for magnesium oxide (MgO) thin films deposited by molecular beam epitaxy with a molecular oxygen flux

Published online by Cambridge University Press:  31 January 2011

Jon-Paul Maria
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27606
Get access

Abstract

The authors report a study of molecular beam deposition of MgO films on amorphous SiO2 and (0001) GaN surfaces over a large range of temperatures (25–400 °C) and molecular oxygen growth pressures (10−7–10−4 Torr). This study provides insight into the growth behavior of an oxide with volatile metal constituents. Unlike other materials containing volatile constituents (e.g., GaAs, PbTiO3), all components of MgO become volatile at normal epitaxial growth temperatures (≥250 °C). Consequently, defining which species is the adsorption controller becomes ambiguous. Different growth regimes are delineated by the critical substrate temperature for Mg re-evaporation and the Mg:O flux ratio. These regimes have impact on phase purity, quartz crystal microbalance calibration, and film microstructure. The universal decay in deposition rate above growth 10−5 Torr O2 is also considered. By introducing a third flux of inert argon gas, rate reduction is attributed to increased molecular scattering and not oxidation of the metal source.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Chambers, S.A., Tran, T.T., Hileman, T.A.Molecular-beam homoepitaxial growth of MgO (001). J. Mater. Res. 9, 2944 (1994)CrossRefGoogle Scholar
2.Craft, H.S., Collazo, R., Losego, M.D., Sitar, Z., Maria, J.P.Surface water reactivity of polycrystalline MgO and CaO films investigated using x-ray photoelectron spectroscopy. J. Vac. Sci. Technol., A 26, 1507 (2008)CrossRefGoogle Scholar
3.Wu, M.C., Corneille, J.S., Estrada, C.A., He, J.W., Goodman, D.W.Synthesis and characterization of ultra-thin MgO films on Mo(100). Chem. Phys. Lett. 182, 472 (1991)CrossRefGoogle Scholar
4.Wu, M.C., Corneille, J.S., He, J.W., Estrada, C.A., Goodman, D.W.Preparation, characterization, and chemical properties of ultrathin MgO films on Mo(100). J. Vac. Sci. Technol., A 10, 1467 (1992)CrossRefGoogle Scholar
5.Chambers, S.A., Tran, T.T., Hileman, T.A., Jurgens, T.A.Epitaxial-growth of MgO on lattice-matched CrxMo1-X(001). Surf. Sci. 320, L81 (1994)CrossRefGoogle Scholar
6.Craft, H.S., Collazo, R., Losego, M.D., Mita, S., Sitar, Z., Maria, J.P.Band offsets and growth mode of molecular beam epitaxy grown MgO (111) on GaN (0002) by x-ray photoelectron spectroscopy. J. Appl. Phys. 102, 74104 (2007)CrossRefGoogle Scholar
7.Meier, A.R., Niu, F., Wessels, B.W.Integration of BaTiO3 on Si (001) using MgO/STO buffer layers by molecular beam epitaxy. J. Cryst. Growth 294, 401 (2006)CrossRefGoogle Scholar
8.El-Shaer, A., Bakin, A., Mofor, A.C., Blasing, J., Krost, A., Stoimenos, J., Pecz, B., Kreye, M., Heuken, M., Waag, A.CBE growth of high-quality ZnO epitaxial layers. Phys. Status Solidi B 243, 768 (2006)CrossRefGoogle Scholar
9.Turban, P., Andrieu, S., Snoeck, E., Kierren, B., Teodorescu, C.NiMnSb/MgO/NiMnSb heterostructures grown by MBE. J. Magn. Magn. Mater. 240, 427 (2002)CrossRefGoogle Scholar
10.Kim, W., Kawaguchi, K., Koshizaki, N., Sohma, M., Matsumoto, T.Fabrication and magnetoresistance of tunnel junctions using half-metallic Fe3O4. J. Appl. Phys. 93, 8032 (2003)CrossRefGoogle Scholar
11.Laloe, J.B., Ionescu, A., Easton, S., Steinke, N.J., Hayward, T.J., Kurebayashi, H., Bland, J.A.C., Charlton, T.R., Dalgliesh, R.M., Langridge, S.Effect of MgO barriers on ferromagnetic metallic layers studied by polarized neutron reflectivity. Appl. Phys. Lett. 93, 012505 (2008)CrossRefGoogle Scholar
12.Luo, B., Johnson, J.W., Gila, B.P., Onstine, A., Abernathy, C.R., Ren, F., Pearton, S.J., Baca, A.G., Dabiran, A.M., Wowchack, A.M., Chow, P.P.Surface passivation of AlGaN/GaN HEMTs using MBE-grown MgO or Sc2O3. Solid State Electron. 46, 467 (2002)CrossRefGoogle Scholar
13.Luo, B., Johnson, J.W., Kim, J., Mehandru, R.M., Ren, F., Gila, B.P., Onstine, A.H., Abernathy, C.R., Pearton, S.J., Baca, A.G., Briggs, R.D., Shul, R.J., Monier, C., Han, J.Influence of MgO and Sc2O3 passivation on AlGaN/GaN high-electron-mobility transistors. Appl. Phys. Lett. 80, 1661 (2002)CrossRefGoogle Scholar
14.Passlack, M., Hong, M., Opila, R.L., Mannaerts, J.P., Kwo, J.R.GaAs surface passivation using in situ oxide deposition. Appl. Surf. Sci. 104–105, 441 (1996)CrossRefGoogle Scholar
15.Hove, J.E.Surface adsorption and migration energies for KCl. Phys. Rev. 99, 430 (1955)CrossRefGoogle Scholar
16.Yadavalli, S., Yang, M.H., Flynn, C.P.Low-temperature growth of MgO by molecular-beam epitaxy. Phys. Rev. B 41, 7961 (1990)CrossRefGoogle ScholarPubMed
17.Arthur, J.R.Interaction of Ga and As2 molecular beams with GaAs surfaces. J. Appl. Phys. 39, 4032 (1968)CrossRefGoogle Scholar
18.Arthur, J.R., Lepore, J.J.GaAs, GaP, and GaAsxP1-X epitaxial films grown by molecular beam deposition. J. Vac. Sci. Technol. 6, 545 (1969)CrossRefGoogle Scholar
19.Theis, C.D., Yeh, J., Schlom, D.G., Hawley, M.E., Brown, G.W.Adsorption-controlled growth of PbTiO3 by reactive molecular beam epitaxy. Thin Solid Films 325, 107 (1998)CrossRefGoogle Scholar
20.Yang, M., Flynn, C.P.Epitaxial growth of MgO single crystal thin film in oxygen atmosphereBeam-Solid Interactions: Fundamentals and Applications edited by M. Nastasi, L.R. Harriott, N. Herbots, and R.S. Averback (Mater. Res. Soc. Symp. Proc. 279, Pittsburgh, PA 1993)837Google Scholar
21.Vassent, J.L., Marty, A., Gilles, B., Chatillon, C.Thermodynamic analysis of molecular beam epitaxy of MgO(s) II. Epitaxial growth of MgO layers on Fe(001) substrates. J. Cryst. Growth 219, 444 (2000)CrossRefGoogle Scholar
22.Geneste, G., Morillo, J., Finocchi, F.Ab initio study of Mg adatom and MgO molecule adsorption and diffusion on the MgO(001) surface. Appl. Surf. Sci. 188, 122 (2002)CrossRefGoogle Scholar
23.Geneste, G., Morillo, J., Finocchi, F.Adsorption and diffusion of Mg, O, and O-2 on the MgO(001) flat surface. J. Chem. Phys. 122, 174707 (2005)CrossRefGoogle Scholar
24.Geneste, G., Morillo, J., Finocchi, F., Hayoun, M.Elementary processes during the epitaxial growth of metal oxides: MgO/MgO (001)Fundamentals of Novel Oxide/Semiconductor Interfaces edited by C.R. Abernathy, E.P. Gusev, D. Schlom, and S. Stemmer (Mater. Res. Soc. Symp. Proc. 786, Warrendale PA 2004) E6.7 365Google Scholar
25.Geneste, G., Morillo, J., Finocchi, F., Hayoun, M.Primary nucleation processes in binary oxide growth: The case of MgO. Surf. Sci. 601, 5616 (2007)CrossRefGoogle Scholar
26.Craft, H.S., Collazo, R., Losego, M.D., Mita, S., Sitar, Z., Maria, J.P.Spectroscopic analysis of the epitaxial CaO (111)-GaN (0002) interface. Appl. Phys. Lett. 92, 082907 (2008)CrossRefGoogle Scholar
27.Craft, H.S., Ihlefeld, J.F., Losego, M.D., Collazo, R., Sitar, Z., Maria, J.P.MgO epitaxy on GaN (0002) surfaces by molecular beam epitaxy. Appl. Phys. Lett. 88, 212906 (2006)CrossRefGoogle Scholar
28.Losego, M.D., Mita, S., Collazo, R., Sitar, Z., Maria, J.P.Epitaxial calcium oxide films deposited on gallium nitride surfaces. J. Vac. Sci. Technol., B 25, 1029 (2007)CrossRefGoogle Scholar
29.Losego, M.D., Mita, S., Collazo, R., Sitar, Z., Maria, J.P.Epitaxial growth of the metastable phase ytterbium monoxide on gallium nitride surfaces. J. Cryst. Growth 310, 51 (2008)CrossRefGoogle Scholar
30.Goodrich, T.L., Cai, Z., Losego, M.D., Maria, J.P., Ziemer, K.S.Thin, crystalline MgO on hexagonal 6H-SIC(0001) by molecular beam epitaxy for functional oxide integration. J. Vac. Sci. Technol., B 25, 1033 (2007)CrossRefGoogle Scholar
31.Goodrich, T.L., Cai, Z., Ziemer, K.S.Stability of MgO(111) films grown on 6H-SiC(0001) by molecular beam epitaxy for two-step integration of functional oxides. Appl. Surf. Sci. 254, 3191 (2008)CrossRefGoogle Scholar
32.Goodrich, T.L., Parisi, J., Cai, Z., Ziemer, K.S.Low temperature growth of crystalline magnesium oxide on hexagonal silicon carbide (0001) by molecular beam epitaxy. Appl. Phys. Lett. 90, 042910 (2007)CrossRefGoogle Scholar
33.Posadas, A., Walker, F.J., Ahn, C.H., Goodrich, T.L., Cai, Z., Ziemer, K.S.Epitaxial MgO as an alternative gate dielectric for SiC transistor applications. Appl. Phys. Lett. 92, 233511 (2008)CrossRefGoogle Scholar
34.Gila, B.P., Kim, J., Luo, B., Onstine, A., Johnson, W., Ren, F., Abernathy, C.R., Pearton, S.J.Advantages and limitations of MgO as a dielectric for GaN. Solid State Electron. 47, 2139 (2003)CrossRefGoogle Scholar
35.Gila, B.P., Onstine, A.H., Kim, J., Allums, K.K., Ren, F., Abernathy, C.R., Pearton, S.J.Magnesium oxide gate dielectrics grown on GaN using an electron cyclotron resonance plasma. J. Vac. Sci. Technol., B 21, 2368 (2003)CrossRefGoogle Scholar
36.Irokawa, Y., Nakano, Y., Ishiko, M., Kachi, T., Kim, J., Ren, F., Gila, B.P., Onstine, A.H., Abernathy, C.R., Pearton, S.J., Pan, C.C., Chen, G.T., Chyi, J.I.MgO/p-GaN enhancement mode metal-oxide semiconductor field-effect transistors. Appl. Phys. Lett. 84, 2919 (2004)CrossRefGoogle Scholar
37.Kim, J., Mehandru, R., Luo, B., Ren, F., Gila, B.P., Onstine, A.H., Abernathy, C.R., Pearton, S.J., Irokawa, Y.Characteristics of MgO/GaN gate-controlled metal-oxide-semiconductor diodes. Appl. Phys. Lett. 80, 4555 (2002)CrossRefGoogle Scholar
38.Schmehl, A., Vaithyanathan, V., Herrnberger, A., Thiel, S., Richter, C., Liberati, M., Heeg, T., Rockerath, M., Kourkoutis, L.F., Muhlbauer, S., Boni, P., Muller, D.A., Barash, Y., Schubert, J., Idzerda, Y., Mannhart, J., Schlom, D.G.Epitaxial integration of the highly spin-polarized ferromagnetic semiconductor EuO with silicon and GaN. Nat. Mater. 6, 882 (2007)CrossRefGoogle ScholarPubMed
39.Zhang, P.F., Liu, X.L., Zhang, R.Q., Fan, H.B., Song, H.P., Wei, H.Y., Jiao, C.M., Yang, S.Y., Zhu, Q.S., Wang, Z.G.Valence band offset of MgO/InN heterojunction measured by x-ray photoelectron spectroscopy. Appl. Phys. Lett. 92, 042906 (2008)CrossRefGoogle Scholar
40.Ihlefeld, J.F., Tian, W., Liu, Z.K., Doolittle, W.A., Bernhagen, M., Reiche, P., Uecker, R., Ramesh, R., Schlom, D.G.Adsorption-controlled growth of BiFeO3 by MBE and integration with wide band gap semiconductors. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 1528 (2009)CrossRefGoogle ScholarPubMed
41.Losego, M.D., Kourkoutis, L.F., Mita, S., Craft, H.S., Muller, D.A., Collazo, R., Sitar, Z., Maria, J.P.Epitaxial Ba0.5Sr0.5TiO3-GaN heterostructures with abrupt interfaces. J. Cryst. Growth 311, 1106 (2009)CrossRefGoogle Scholar
42.Goodrich, T.L., Cai, Z., Losego, M.D., Maria, J.P., Kourkoutis, L.F., Muller, D.A., Ziemer, K.S.Improved epitaxy of barium titanate by molecular beam epitaxy through a single crystalline magnesium oxide template for integration on hexagonal silicon carbide. J. Vac. Sci. Technol., B 26, 1110 (2008)CrossRefGoogle Scholar
43.Kang, Y.S., Fan, Q., Xiao, B., Alivov, Y.I., Xie, J.Q., Onojima, N., Cho, S.J., Moon, Y.T., Lee, H., Johnstone, D., Morkoc, H., Park, Y.S.Fabrication and current-voltage characterization of a ferroelectric lead zirconate titanate/AlGaN/GaN field effect transistor. Appl. Phys. Lett. 88, 123508 (2006)CrossRefGoogle Scholar
44.Xiao, B., Gu, X., Izyumskaya, N., Avrutin, V., Xie, J.Q., Liu, H.Y., Morkoc, H.Structural and electrical properties of Pb(Zr,Ti)O-3 grown on (0001) GaN using a double PbTiO3/PbO bridge layer. Appl. Phys. Lett. 91, 182908 (2007)CrossRefGoogle Scholar
45.Tian, W., Vaithyanathan, V., Schlom, D.G., Zhan, Q., Yang, S.Y., Chu, Y.H., Ramesh, R.Epitaxial integration of (0001) BiFeO3 with (0001) GaN. Appl. Phys. Lett. 90, 172908 (2007)CrossRefGoogle Scholar
46.Yang, S.Y., Zhan, Q., Yang, P.L., Cruz, M.P., Chu, Y.H., Ramesh, R., Wu, Y.R., Singh, J., Tian, W., Schlom, D.G.Capacitance-voltage characteristics of BiFeO3/SrTiO3/GaN heteroepitaxial structures. Appl. Phys. Lett. 91, 022909 (2007)CrossRefGoogle Scholar
47.Stolichnov, I., Malin, L., Muralt, P., Setter, N.Ferroelectric gate for control of transport properties of two-dimensional electron gas at AlGaN/GaN heterostructures. Appl. Phys. Lett. 88, 43512 (2006)CrossRefGoogle Scholar
48.Stolichnov, I., Colla, E., Setter, N.Nonvolatile gate effect in a ferroelectric-semiconductor quantum well. Phys. Rev. Lett. 97, 247601 (2006)CrossRefGoogle Scholar
49.Malin, L., Stolichnov, I., Setter, N.Ferroelectric polymer gate on AlGaN/GaN heterostructures. J. Appl. Phys. 102, 114101 (2007)CrossRefGoogle Scholar
50.Gruverman, A., Cao, W., Bhaskar, S., Dey, S.K.Investigation of Pb(Zr,Ti)O-3/GaN heterostructures by scanning-probe microscopy. Appl. Phys. Lett. 84, 5153 (2004)CrossRefGoogle Scholar
51.Hellman, E.S., Hartford, E.H.Epitaxial solid-solution films of immiscible MgO and CaO. Appl. Phys. Lett. 64, 1341 (1994)CrossRefGoogle Scholar
52.Iedema, M.J., Kizhakevariam, N., Cowin, J.P.Mixed oxide surfaces: Ultrathin films of CaxMg(1-x)O. J. Phys. Chem. B 102, 693 (1998)CrossRefGoogle Scholar
53.Li, H.D., Zhang, X.N., Zhang, Z., Mei, Z.X., Du, X.L., Xue, Q.K.Structure stability of epitaxial MgO-CaO solid-solution films: Effect of diffusion. J. Appl. Phys. 101, 106102 (2007)CrossRefGoogle Scholar
54.Kraisinger, C., Fusina, D., Schlom, D.G.Computer simulation, design, and characterization of a nozzle for more effective delivery of oxidizing gasesEpitaxial Oxide Thin Films II edited by J.S. Speck, D.K. Fork, R.W. Wolf, and T. Shiosaki (Mater. Res. Soc. Symp. Proc. 401, Pittsburgh, PA 1996)387Google Scholar
55.Collazo, R., Mita, S., Schlesser, R., Sitar, Z.Polarity control of GaN thin films grown by metalorganic vapor phase epitaxy. Phys. Status Solidi 2, 2117 (2005)CrossRefGoogle Scholar
56.Mita, S., Collazo, R., Rice, A., Dalmau, R.F., Sitar, Z.Influence of gallium supersaturation on the properties of GaN grown by metalorganic chemical vapor deposition. J. Appl. Phys. 104, 013521 (2008)CrossRefGoogle Scholar
57.Barin, I.Thermochemical Data of Pure Substances (VCH, New York 1989)Google Scholar
58.Smith, D.L.Thin Film Deposition: Principles and Practice (McGraw-Hill, New York 1995)Google Scholar
59.Catlow, C.R.A., Faux, I.D., Norgett, M.J.Shell and breathing shell-model calculations for defect formation energies and volumes in magnesium-oxide. J. Phys. C 9, 419 (1976)CrossRefGoogle Scholar
60.Schlom, D.G., Harris, J.S.MBE growth of high Tc superconductorsMolecular Beam Epitaxy: Applications to Key Materials edited by R.F.C. Farrow (Noyes Publications, Park Ridge, NJ 1995)Google Scholar
61.Hellman, E.S., Hartford, E.H.Effects of oxygen on the sublimation of alkaline-earths from effusion cells. J. Vac. Sci. Technol., B 12, 1178 (1994)CrossRefGoogle Scholar
62.Messier, R., Giri, A.P., Roy, R.A.Revised structure zone model for thin-film physical structure. J. Vac. Sci. Technol., B 2, 500 (1984)CrossRefGoogle Scholar
63.Yang, M.H., Flynn, C.P.Growth of alkali-halides by molecular-beam epitaxy. Phys. Rev. B 41, 8500 (1990)CrossRefGoogle ScholarPubMed
64.Ohring, M.Materials Science of Thin Films 2nd ed. (Academic Press, New York 2002)Google Scholar
65.Herman, M.A., Sitter, H.Molecular Beam Epitaxy: Fundamentals and Current Status (Springer-Verlag, New York 1989)CrossRefGoogle Scholar