Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T19:28:51.292Z Has data issue: false hasContentIssue false

A critical examination of the fundamental relations used in the analysis of nanoindentation data

Published online by Cambridge University Press:  31 January 2011

Jack C. Hay
Affiliation:
IBM Research, T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598
A. Bolshakov
Affiliation:
Baker Hughes Inteq, P.O. Box 670968, Houston, Texas 77267-0968
G. M. Pharr*
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, 434 Dougherty Engineering Building, Knoxville, Tennessee 37996-2200 and Oak Ridge National Laboratory, Metals and Ceramics Division, P.O. Box 2008, Oak Ridge, Tennessee 37831-6116
*
a)Address all correspondence to this author at the university of Tennessee.
Get access

Abstract

Methods for analyzing nanoindentation load-displacement data to determine hardness and elastic modulus are based on analytical solutions for the indentation of an elastic half-space by rigid axisymmetric indenters. Careful examination of Sneddon's solution for indentation by a rigid cone reveals several largely ignored features that have important implications for nanoindentation property measurement. Finite element and analytical results are presented that show corrections to Sneddon's equations are needed if accurate results are to be obtained. Without the corrections, the equations underestimate the load and contact stiffness in a manner that leads to errors in the measured hardness and modulus, with the magnitudes of the errors depending on the angle of the indenter and Poisson's ratio of the half-space. First order corrections are derived, and general implications for the interpretation of nanoindentation data are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Newey, D., Wilkins, M. A., and Pollock, H. M., J. Phys. E: Sci. Instrum. 15, 119122 (1982).Google Scholar
2.Bulychev, S. I., Alekhin, V. P., Shorshorov, M. Kh., Ternovskii, A. P., and Shnyrev, G. D., Zavod. Lab. 41, 1137 (1975).Google Scholar
3.Shorshorov, M. Kh., Bulychev, S. I., and Alekhin, V. P., Sov. Phys. Dokl. 26, 769 (1981).Google Scholar
4.Bulychev, S. I. and Alekhin, V. P., Zavod. Lab. 53, 76 (1987).Google Scholar
5.Loubet, J. L., Georges, J. M., Marchesini, O., and Meille, G., J. Tribology 106, 43 (1984).CrossRefGoogle Scholar
6.Frolich, F., Grau, P., and Grellmann, W., Phys. Status Solidi 42, 79 (1977).Google Scholar
7.Pethica, J. B., Hutchings, R., and Oliver, W. C., Philos. Mag. A 48, 593 (1983).CrossRefGoogle Scholar
8.Stone, D., LaFontaine, W. R., Alexopoulos, P., Wu, T-W., and Li, C-Y., J. Mater. Res. 3, 141 (1988).CrossRefGoogle Scholar
9.Oliver, W. C. and Pharr, G. M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
10.Doerner, M. F. and Nix, W. D., J. Mater. Res. 1, 601 (1986).CrossRefGoogle Scholar
11.Field, J. S. and Swain, M. V., J. Mater. Res. 8, 297 (1993).CrossRefGoogle Scholar
12.Field, J. S. and Swain, M. V., J. Mater. Res. 10, 101 (1995).Google Scholar
13.Pharr, G. M., Oliver, W. C., and Brotzen, F. R., J. Mater. Res. 7, 613 (1992).CrossRefGoogle Scholar
14.Love, A. E. H., Quart. J. Math. 10, 161 (1939).CrossRefGoogle Scholar
15.Love, A. E. H., Philos. Trans. A 228, 377 (1929).Google Scholar
16.Harding, J. W. and Sneddon, I. N., Proc. Cambridge Philos. Soc. 41, 16 (1945).Google Scholar
17.Sneddon, I. N., Int. J. Eng. Sci. 3, 47 (1965).CrossRefGoogle Scholar
18.Sneddon, I.N., Fourier Transforms (McGraw-Hill Book Company, Inc., New York, 1951), pp. 450467.Google Scholar
19.Bulychev, S. I., Alekhin, V. P., Shorshorov, M. Kh., Ternovskii, A. P., and Shnyrev, G. D., Zavod. Lab. 41, 1137 (1975).Google Scholar
20.Bulychev, S. I., Alekhin, V. P., Shorshorov, M. Kh., and Ternovskii, A. P., Prob. Prochn. 9, 79 (1976).Google Scholar
21.Cheng, C-M. and Cheng, Y-T., Appl. Phys. Lett. 71, 2623 (1997).CrossRefGoogle Scholar
22.Bolshakov, A. and Pharr, G. M., J. Mater. Res. 13, 1049 (1998).CrossRefGoogle Scholar
23.Bolshakov, A., Oliver, W. C., and Pharr, G. M., in Thin Films: Stresses and Mechanical Properties VI, edited by Gerberich, W. W., Gao, H., Sundgren, J-E., and Baker, S. P. (Mater. Res. Soc. Symp. Proc. 436, Pittsburgh, PA, 1997), p. 141.Google Scholar
24.Ritter, J. E., Lardner, T. J., Madsen, D. T., and Gionazzo, R. J., in Materials in Microelectronic and Optoelectronic Packaging (The American Ceramic Society, Westerville, OH), p. 379.Google Scholar
25.Gao, H., Chiu, C-H., and Lee, J., Int. J. Solids Struct. 29, 2471 (1992).Google Scholar
26.Cheng, Y-T. and Cheng, C-M., J. Appl. Phys. 84, 1284 (1998).Google Scholar
27.Larsen, T. A. and Simo, J.C., J. Mater. Res. 7, 618 (1992).CrossRefGoogle Scholar
28.Bolshakov, A. and Pharr, G. M., in Thin Films: Stresses and Mechanical Properties VI, edited by Gerberich, W. W., Gao, H., Sundgren, J-E., and Baker, S. P. (Mater. Res. Soc. Symp. Proc. 436, Pittsburgh, PA, 1997), p. 189.Google Scholar
29.Boussinesq, J., Applications des Potentiels a l'etude de equilibre dt du mouvement des solides elastiques (Gauthier-Villars, Paris, 1885).Google Scholar
30.Titchmarsh, E. C., Introduction to the Theory of Fourier Integrals (Clarendon Press, Oxford, 1937).Google Scholar
31.Busbridge, I. W., Proc. London Math. Soc. 44, 115 (1938).Google Scholar
32.Bolshakov, A., Ph.D. Thesis, Rice University, 1996.Google Scholar