Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-02T18:14:22.059Z Has data issue: false hasContentIssue false

Crystal growth and electrical properties of Li2B4O7

Published online by Cambridge University Press:  31 January 2011

K. Byrappa*
Affiliation:
Department of Geology, University of Mysore, Manasagangotri, Mysore, 570 006, India
V. Rajeev
Affiliation:
Department of Applied Electronics, Gulbarga University, Gulbarga, 585 106, India
V. J. Hanumesh
Affiliation:
Department of Applied Electronics, Gulbarga University, Gulbarga, 585 106, India
A. R. Kulkarni
Affiliation:
Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology, Powai, Bombay, 400 076, India
A.B. Kulkarni
Affiliation:
Department of Applied Electronics, Gulbarga University, Gulbarga 585 106, India
*
a) Address all correspondence to this author. Email: byron@cscftri.ren.nic.in
Get access

Abstract

Growth of Li2B4O7 crystals has been carried out under hydrothermal conditions at relatively low temperature and pressure conditions (T = 250 °C, P = 100 bars). A systematic study of electrical measurements has been carried out within a wide range of internal frequency and temperature. The corresponding impedance, Arrhenius, and Bode plots are given.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ross, V. F. and Edwards, J. O., Boron and Its Compounds, The Chemistry of Boron and its Compounds (John Wiley & Sons, New York, 1967).Google Scholar
2. Whatmore, R. W., Shorrocks, N.M., O'Hara, C., and Ainger, F.W., Electron. Lett. 17, 11 (1981).CrossRefGoogle Scholar
3. Button, D. P., Mason, L. S., Tuller, H. L., and Uhlmann, D. R., Solid State Ionics 9, 585 (1983).CrossRefGoogle Scholar
4. Bhalla, A. S., Cross, L. E., and Whatmore, R. W., Jpn. J. Appl. Phys. 24, 727 (1985).CrossRefGoogle Scholar
5. Garrett, J. D., Natarajan-Iyer, M., and Greedan, J.E., J. Cryst. Growth 41, 225 (1977).CrossRefGoogle Scholar
6. Fan, S., Shen, G-S., Wand, W., Li, J-L., and Le, X-H., J. Cryst. Growth 99, 811 (1990).Google Scholar
7. Byrappa, K. and Shekar, K. V. K., J. Mater. Res. 8, 864 (1993).CrossRefGoogle Scholar
8. Byrappa, K., Shekar, K. V. K., and Rodriguez, R. Clemente, Mater. Res. Bull. 28, 709 (1993).CrossRefGoogle Scholar
9. Shekar, K. V. K., Ph.D. Thesis, Mysore University, Mysore, India (1993).Google Scholar
10. Aliev, A. E. and Burak, Ya.V., Abstracts 4th All-Union Conf. on Physics of Insulators, Tomsk, Russia (1988), p. 55.Google Scholar
11. Abramovich, A. A., Shutilov, V. A., and Levitskaya, T. D., Sov. Phys. Solid State 14, 2237 (1973).Google Scholar
12. Page, J. H. and Prieur, J.D., Phys. Rev. Lett. 42, 1684 (1979).CrossRefGoogle Scholar
13. Vorob'ev, V. V., Kuleshov, A. A., and Charnaya, E. V., Sov. Phys. Solid State 31, 1670 (1989).Google Scholar
14. Boukamp, B. A., Equivalent Circuit Users Manual, Univ. of Twente, The Netherlands (May 1989).Google Scholar