Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-02T18:24:02.762Z Has data issue: false hasContentIssue false

Crystal growth and morphology of hydrothermally grown lithium borates

Published online by Cambridge University Press:  03 March 2011

K. Byrappa
Affiliation:
Department of Geology and The Mineralogical Institute, University of Mysore, Manasagangotri, Mysore-570 006, India
K.V.K. Shekar
Affiliation:
Department of Geology and The Mineralogical Institute, University of Mysore, Manasagangotri, Mysore-570 006, India
R. Rodriguez-Clemente
Affiliation:
Institute of Materials Science of Barcelona, CSIC Campus U.A.B.E.-08193, Cerdanyola, Spain
Get access

Abstract

The Li2O–B2O3–H2O system has been studied under hydrothermal conditions. Li4B7O12Cl, Li2B4O7, Li3B5O8(OH)2, Li2HBO3, and LiH2B5O9 are the phases crystallizing in this system at 250 °C and P < 100 bars. The growth of these phases has been discussed in brief. Also, the growth morphology of these phases has been studied with reference to the growth parameters.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Lutz, F. and Leiss, M., Recent Nd-Miniature Lasers, Extended Abstract (57, ECCG-2, Lancaster, UK 10-15 Sept. (1979).Google Scholar
2Reau, J. M., Levasseur, A., Maniez, G., Cales, B., Fouassier, C., and Hagenmuller, P., Mater. Res. Bull. XI, 1087 (1976).CrossRefGoogle Scholar
3Chen, C. T., Wu, B. C., Jiang, A. D., and Yov, G. M., Scientia Sinica B 28, 238 (1985).Google Scholar
4Garrett, J. D., Natarajan-Iyer, M., and Greedan, J. E., J. Cryst. Growth 41, 225 (1977).CrossRefGoogle Scholar
5Konig, V. H. and Hoppe, R., Z. Anorg. Allg. Chem. 439, 71 (1978).CrossRefGoogle Scholar
6Sastry, B. S.R. and Hummel, F.A., J. Am. Ceram. Soc. 41, 7 (1958).CrossRefGoogle Scholar
7Belov, N. V., Ivaschenko, A. I., Bondareva, O. S., Lobachev, A. N., Malinovskii, Yu.A., Melnikov, O. K., and Simonov, M. A., in Hydrothermal Synthesis and Growth of Single Crystals, edited by Lobachev, A. N. (Nauka, Moscow, 1982), p. 158.Google Scholar
8Melnikov, O. K., Bondareva, O. S., and Malinovskii, Y. A., 1st Int. Symp. Hydrothermal Reacts., Tokyo, Japan (1982).Google Scholar
9Robertson, D. S. and Young, I. M., J. Mater. Sci. 17, 1729 (1982).CrossRefGoogle Scholar
10Adachi, M., Jpn. J. Appl. Phys. 24, Suppl. 24-3, 72 (1985).CrossRefGoogle Scholar
11Komatsu, R., Suetsugu, T., and Ono, M., J. Cryst. Growth 15, 12 (1988).Google Scholar
12Byrappa, K. and Shekar, K.V.K., J. Mater. Chem. 2, 13 (1992).CrossRefGoogle Scholar
13Byrappa, K., Shekar, K.V.K., and Gali, S., Cryst. Res. Technol. 27, 767 (1992).CrossRefGoogle Scholar
14Byrappa, K. and Shekar, K.V.K., J. Mater. Res. 8, 864 (1993).CrossRefGoogle Scholar
15Buckley, H. E., Crystal Growth (John Wiley, New York, 1958).Google Scholar
16Tokuda, T. and Ives, M. B., J. Electrochem. Soc. 118, 1404 (1971).CrossRefGoogle Scholar