Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-14T19:07:23.078Z Has data issue: false hasContentIssue false

Crystal growth and structure analysis of Sm2−xCexCuO4

Published online by Cambridge University Press:  31 January 2011

H. Takeda
Affiliation:
Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101–0062, Japan
M. Okuno
Affiliation:
Department of Earth Sciences, Kanazawa University, Kanazawa 920–1192, Japan
M. Ohgaki
Affiliation:
Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101–0062, Japan
K. Yamashita
Affiliation:
Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101–0062, Japan
T. Matsumoto
Affiliation:
Department of Earth Sciences, Kanazawa University, Kanazawa 920–1192, Japan
Get access

Abstract

The phase diagram of the Sm2O3–CuO system was investigated by the combination of the differential thermal analysis and the quench method. The results showed that Sm2CuO4 incongruently melts at about 1220 °C, and that the solid Sm2CuO4 exists in equilibrium with the liquid consisting of 81–95 mol% CuO in the range of 1060–1220 °C. On the basis of the phase diagram, Sm2−xCexCuO4 single crystals were grown by the traveling solvent floating zone method. The crystal structure [space group I4/mmm, a = 3.917(1), c 4 11.899(2) Å] has been refined using single-crystal x-ray diffraction data with a precision corresponding to an R index of 0.02.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tokura, Y., Takagi, H., and Uchida, S., Nature 337, 345 (1989).CrossRefGoogle Scholar
2.Caneiro, A., Serquis, A., and Prado, F., Physica C 253, 339 (1995).Google Scholar
3.Spinolo, G., Scavini, M., Ghigna, P., Chiodelli, G., and Flor, G., Physica C 254, 359 (1996).CrossRefGoogle Scholar
4.Fontcuberta, J., Seffar, A., Pinol, S., Obradors, X., Peraudeau, G., and Berjoan, R., Physica C 259, 75 (1996).Google Scholar
5.Caneiro, A., Serquis, A., and Prado, F., Physica C 273, 163 (1996).Google Scholar
6.Maljuk, A.N., Jokhov, A.A., Naumenko, I.G., Bdikin, I.K., Zver'kov, S.A., and Emel'chenko, G.A., Physica C 329, 51 (2000).CrossRefGoogle Scholar
7.Jardim, R.F., Sandin, M.J.R, Suzuki, P.A., Spagna, S., Tripp, S.C., and Sager, R.E., Physica C 289, 265 (1997).Google Scholar
8.Sandin, M.J.R and Jardim, R.F., Physica C 328, 246 (1999).CrossRefGoogle Scholar
9.Kim, J.H., B-H., O, Markert, J.T., and Van der Marel, D., Physica C 282–287, 1023 (1997).Google Scholar
10.Kund, M., Neumeier, J.J., Andres, K., Markl, J., and Saemann-Ischenko, G., Physica C 296, 173 (1998).CrossRefGoogle Scholar
11.Oka, K., and Unoki, H., Jpn. J. Appl. Phys. 28, L937 (1989).CrossRefGoogle Scholar
12.Kojima, H., Watanabe, T., Komai, , and Tanaka, I., Mol. Cryst. Liq. Cryst. 184, 69 (1990).Google Scholar
13.Matsuda, M., Endoh, Y., and Hidaka, Y., Physica C 179, 347 (1991).CrossRefGoogle Scholar
14.Kojima, H., Watanabe, T., Komai, , and Tanaka, I., Physica C 185–189, 437 (1991).Google Scholar
15.Markl, J., Ströbel, J.P., Klauda, M., and Saemann-Icshenko, G., J. Cryst. Growth 113, 395 (1991).CrossRefGoogle Scholar
16.Tranquada, M.J., Heald, S.M., Moodenbaugh, A.R., Liang, G., and Croft, M., Nature 337, 720 (1989).CrossRefGoogle Scholar
17.Takagi, H., Uchida, S., and Tokura, Y., Phys. Rev. B 62, 1197 (1989).Google Scholar
18.Kajitani, T., Hiraga, K., Hosoya, S., Fukuda, T., Oh-ishi, K., Kikuti, M., Syouno, Y., Tomiyosi, M., Takahasi, M., and Muto, Y., Physica C 169, 227 (1990).CrossRefGoogle Scholar
19.Kajitani, T., Hiraga, K., Hosoya, S., Fukuda, T., Oh-ishi, K., and Syouno, Y., Physica C 178, 397 (1991).CrossRefGoogle Scholar
20.Kwei, G.H., Cheong, S-W., Fisk, Z., Garzon, F.H., Goldstone, J.A., and Thompson, J.D., Phys. Rev. B 40, 9370 (1989).CrossRefGoogle Scholar
21.Izumi, F., Matui, Y., Takagi, H., Uchida, S., Tokura, Y., and Asano, H., Physica C 158, 433 (1989).CrossRefGoogle Scholar
22.Marin, C., Henry, J.Y., and Boucherle, J.X., Solid State Commun. 86, 425 (1993).CrossRefGoogle Scholar
23.Makarova, I.P., Simonov, V.I., Bram, A., Burzlaff, H., Blomberg, M., and Merisalo, M., J. Alloys Compd. 225, 599 (1995).CrossRefGoogle Scholar
24.Becker, P.J., and Coppens, P., Acta Crystallogr. A 30, 129 (1974).CrossRefGoogle Scholar
25.Kihara, K., Matsumoto, T., and Imamura, M., Z. Kristallogr. 177, (1986).Google Scholar
26. International Tables for X-ray Crystallography (Birmingham, Kynoch Press, 1974), Vol. IV, pp. 149150.Google Scholar
27.Tokonami, M., Acta Crystallogr. 19, 486 (1965).CrossRefGoogle Scholar
28.Gadalla, A.M.M, Ford, W.F., and White, J., Trans. Br. Ceram. Soc. 62, 57 (1963).Google Scholar
29.Oka., K. and Unoki, H., Jpn. J. Appl. Phys. 10, L1590 (1987).CrossRefGoogle Scholar
30.Ohgaki, M., Kondoh, R., Tanaka, K., Marumo, H., and Kojima, H., Extended Abstracts (The Crystallographic Society of Japan, 1989), PA4 (in Japanese).Google Scholar
31.Sasaki, S., Acta Crystallogr. B 48, 393 (1992).CrossRefGoogle Scholar